2014
 CHEMICAL ENGINEERING

Time Allowed: 3 Hours]
[Maximum Marks : 300
Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series without any omission and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall he reported to the Invigilator within first 10 minutes.
3. Answer all questions. All questions carry equal marks.
4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
5. An answer sheet will be supplied to you separately by the invigilator to mark the answers.
6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows :

9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
10. The sheet before the last page of the Question Booklet can be used for Rough Work.
11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
12. In all matters and in cases of doubt, the English Version is final.
13. Do not tick-mark or mark the answers in the Question booklet.
14. Ideal refrigeration cycle is
(A) Same as Carnot cycle
(D) Same as reverse carnot cycle
(C) Dependent on refrigerant properties
(D) The least efficient of all refrigeration processes
15. When a system consisting of several components distributed between various phases in thermodynamic equilibrium at a definite temperature and pressure, the chemical potential of each component is
same in all phases
(B) different in all phases
(C) zero in all phases
(D) constant in all phases
16. The reaction coordinate measures
(4) The progress of a reaction and is defined as the degree to which a reaction has
(B) The changes in reaction takes place
(C) Different species taking part in the reaction
(D) Various species converted in the reaction
17. Phase rule for reacting systems
(A) $\quad F=C-\pi+2$
(B) $\quad F=C+\pi-2$
(a)
$F=C-\pi-r+2$
(D) $F=C-\pi+r-2$
18. For the equilibrium yield in a gas phase reaction, diluting the reaction mixture with an inert gas
(A) Has the same effect as that of an increase in pressure
(D) Has the same effect as that of a decrease in pressure
(C) Has no correlation with a change in pressure
(D) Always produces unfavourable results
19. According to Charles law, that for a given mass of an ideal gas
(स)
(B) the ratio of the volume to temperature is constant at a given pressure the ratio of the pressure to temperature is constant at a given volume
(C) the ratio of the pressure to temperature is not constant at a given volume
(D) the ratio of the volume to temperature is not constant at a given pressure
20. The critical temperature is
the maximum temperature at which the gas can be liquified
(B) the maximum temperature at which the gas attained its ideality
(C) the minimum temperature at which the gas can be liquified
(D) the minimum temperature the gas attained its ideality
21. The volume basis analysis like $V=\Sigma V_{i}$ is known as where V_{i} is the volume of pure component, i present in the mixture and the total volume of the gas is V
(A) Vander Walls equation
(B) Boyle's law
(d) Amagat's law
(D) Charles law
22. Raoult's law provides a simple expression
(d) $\bar{P}_{i}=x_{i} P_{i}^{S}$
(B) $\quad P_{i}=x^{2} P_{i}^{S}$
(C) $\quad P=x_{i} P_{i}$
(D) $P_{i}^{S}=x_{i} P_{i}$
23. Absolute pressure is equal to
(A) Atmospheric pressure only
(B) Gauge pressure only
(A)
Atmospheric pressure + gauge pressure (D) Atmospheric pressure - gauge pressure
24. A limiting component is defined as
(A) One which decides the conversion in the reactions
(B) One which decides the conversion in the reactants
(C) One which decides the unreacted components in the reactions
(D) One which decides the conversion in the reactants and products
25. The percentage conversion of CH_{4} is given as, when ' a ' be the $\mathrm{K} \mathrm{mol} \mathrm{of} \mathrm{CH}_{4}$ fed of which 'b' K mol of CH_{4} are reacted by reaction and ' c ' $\mathrm{K} \mathrm{mol} \mathrm{of} \mathrm{CH}_{4}$ are reacted by reaction with $\mathrm{H}_{2} \mathrm{O}$ gives Co and H_{2}
(x) Percentage conversion of $\mathrm{CH}_{4}=\left\{\frac{b+c}{a}\right\} \times 100$
(B) Percentage conversion of $\mathrm{CH}_{4}=\left(\frac{b-c}{a}\right) \times 100$
(C) Percentage conversion of $\mathrm{CH}_{4}=\left(\frac{b+a}{c}\right) \times 100$
(D) Percentage conversion of $\mathrm{CH}_{4}=\left(\frac{a-b}{c}\right) \times 100$
26. For ideal gases, the molal heat capacity of a gas mixture at a constant pressure is given by
(a) $C p^{\circ}$ mix $=\sum_{1}^{n} x_{i} C p i^{\circ}$
(B) $\quad C p \operatorname{mix}=x_{i} C p i^{\circ}$
(C) $\quad C p$ mix $=\sum_{i}^{n} x_{i} C p i$
(D) $\quad C p i \operatorname{mix}=\sum_{i}^{n} x_{i} C p$
27. The relationship between vapour pressure (P) and temperature (T) is given as Antonieequation which follows, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are Antonie equation constants
(1) $\log _{10} P=A-\frac{B}{T+C}$
(B) $\log _{10} P=A-\frac{B}{T-C}$
(C) $\ln P=A+\frac{B}{T-C}$
(D) $\ln P=A+\frac{B}{T+C}$
28. For vapour-liquid mixture, the amounts of the phases can be calculated using
(A) Material balance equation
(B) Energy balance equation
(C) Both (A) and (B) Tie line method
29. When solids dissolve in a solvent, the exothermic heat of solution is given a
(A) negative sign
(1) positive sign
(C) infinity
(D) zero
30. The fundamental dimention of power is
(A) $\quad\left[M^{\circ} L^{2} T^{-3}\right]$
(W) $\left[M^{1} L^{2} T^{-3}\right]$
(C) $\left[M L T^{-2}\right]$
(D) $\left[M L T^{-3}\right]$
31. $M L^{2} T^{-2}$ is the fundamental unit of
(A) work
(B) energy
(C) power
(D) force
32. If no chemical reaction is involved, the material balances should based on
4
chemical compounds
(B) elements
(C) atomic species
(D) components of fixed compositions
33. Which is true, when material balance is applied to a system ice \rightleftharpoons water at steady st
(A). Input $=$ output, Accumulation $\neq 0$ Consumption $=0$
(B) Input \neq output, Accumulation $=0$ Consumption $=0$
(C) Input $=$ output, Accumulation $=0$ Consumption $\neq 0$
on Input $=$ output, Accumulation $=0$ Consumption $=0$
34. The capacity of the screen is controlled simply by varying
(X) the rate of feed to the unit
(B) the rate of feed to the unit time the rate of time to the feed
(D) the rate of feed to the size of the screen
35. Mills that reduce solids to such fine particles are called
(A) Ball mills
(B) Tumbling mills
(C) Conical ball mills
(D) Ultra fine grinders
36. Rotary knife cutters and granulators are applied in size reduction machines for
(A) the manufacture of cement
(B) the manufacture of lime
(C) the manufacture of neither rubber nor plastics
(D) the manufacture of plastics and rubber
37. The specific cake resistance is measured by
(x) $1 \mathrm{~m} / \mathrm{kg}$
(B) mg / m
(C) $\mathrm{m}^{2} / \mathrm{kg}$
(D) $\mathrm{m}^{2} / \mathrm{kg} \cdot \mathrm{s}$
38. The ratio of actual mesh dimension of Taylor series to that of the next smaller screen is
(A) 1
(B) 2
(b) $\sqrt{2}$
(D) 1.5
39. The opening of 400 mesh screen (Tayler screen) is
(A) 0.38 mm
(B) 0.038 mm
(C) 0.0038 mm
(D) 3.8 mm
40. If the solid particles being removed completely plug the pores of the filter medium and the rate of plugging is constant with time this mechanism is known as
(A) Crushing
(4)
Direct sieving
(C) Screen blindness
(D) Grinding
41. In screen analysis the notation $+20 \mathrm{~mm} /-30 \mathrm{~mm}$ means passing through
(A) Passing 20 mm screen and retained on 30 mm screen.
(D) Passing 30 mm screen and retained on 20 mm screen
(C) Passing 25 mm screen and retained on 20 mm screen
(D) Retained on 30 mm screen
42. Mesh is defined as
(A) The number of openings per linear feet of screen surface
(D) The number of openings per linear inch of screen surface
(C) The number of openings per linear metre of screen surface
(D) The number of openings per linear centimetre of screen surface
43. The specific surface of a spherical particle is
(A) $\frac{6}{\rho}$
(D) $\frac{6}{\rho \cdot D}$
(C) $\frac{\rho \cdot D}{6}$
(D) $\frac{6 \rho}{D}$
44. Fibrous materials can be broken by
(A) Crushing rolls
(b) Squirrel - cage - disintegrator
(C) Tube mill
(D) Ball mill
45. Filter medium resistance is that offered by
(A) the concentration of suspension slurry to be filtered
(B) filter cloth
(C) embedded particles in the septum
(D) both (B) and (C)
46. During filteration the superficial viscosity $\left(\mu_{c}\right)$ of filtrate is equal to where ' e ' is voidage, ΔP is pressure drop ' S ' is specific surface of particle, μ is viscosity of filtrate ' L ' is cake resistance
(A) $\frac{5(1-e)^{2}}{e^{3}} \cdot \frac{(-\Delta P)}{S^{2} \mu L}$
(6) $\frac{1}{5} \frac{e^{3}}{(1-e)^{2}} \frac{(-\Delta P)}{S^{2} \mu L}$
(C) $\frac{5(1-e)^{2}}{e^{3}} \frac{S^{2} \mu L}{(-\Delta P)}$
(D) $\frac{1}{5} \frac{e^{3}}{(1-e)^{2}} \frac{S^{2} \mu L}{(-\Delta P)}$
47. The compressibility coefficient for incompressible sludges are
(M) 0
(B) 0.1
(C) 0.2
(D) 0.3
48. Explosive materials can be crushed by
(A) dry grinding
(क) wet grinding
(C) grinding
(D) ball mill
49. The mechanical energy supplied to the crusher is always greater, due to
(A) Power losses
(B) Gravitational forces
(C) Viscous forces
D) Friction losses
50. During size reduction the optimum speed of ball mill must be
(A) $10-15 \%$ of critical speed
(B) $30-35 \%$ of critical speed
(b) 1
$50-75 \%$ of critical speed
(D) more than 90% of critical speed
51. Which of the following is a coarse crusher?
(A) Crushing rolls
(B) Gyratory crusher
(C) Smooth roll crusher
(D) Jaw crusher
52. For a spherical particle, half of the angle of nip (α) for a roll crusher is where D_{r}, D_{F} and D_{P} are the diameter of crushing rolls feed part, product part respectively
(1) $\cos \frac{\alpha}{2}=\frac{\frac{D_{r}}{2}+\frac{D_{P}}{2}}{\frac{D_{r}}{2}+\frac{D_{F}}{2}}$
(B) $\sin \frac{\alpha}{2}=\frac{\frac{D_{r}}{2}+\frac{D_{P}}{2}}{\frac{D_{r}}{2}+\frac{D_{F}}{2}}$
(C) $\cos \frac{\alpha}{2}=\frac{\frac{D_{r}}{2}+\frac{D_{F}}{2}}{\frac{D_{r}}{2}+\frac{D_{P}}{2}}$
(D) $\sin \frac{\alpha}{2}=\frac{\frac{D_{r}}{2}+\frac{D_{F}}{2}}{\frac{D_{r}}{2}+\frac{D_{P}}{2}}$
53. Epoxy resins have applied for
(M) Protective coatings
(B) Decorative coatings
(C) Injection molding
(D) Extrusion molding
54. Amatol is a mixture of
(M) TNT and ammonium nitrate
(B) Nitroglycerine and sodium chloride
(C) Ammonium chloride and sodium chloride(D) Ammonium sulphate and Toluene
55. Wax is a
(A) Mixture of glycerides
D) Mixture of esters of polyhydric alcohols other than glycerine
(C) Mixture of glycerides of fatty acids
(D) Mixture of fatty acids
56. Akremite is a mixture of
(M) Prilled ammonium nitrate, fuel oil and dynamite
(B) Ammonium chloride and fuel oil
(C) Ammonium sulphate and sodium chloride
(D) Ammonium chloride and sulfur
57. Hybrid propellants are available as a mixture of
(4) 1 Solid fuel and liquid oxidizer
(B) Liquid fuel and solid oxidizer
(C) Gaseous fuel and solid coxidizer .
(D) Solid fuel and solid oxidizer
58. Contamination of pure cultures used infermentation is avoided by
(M)
Heat sterilization
(B) Adsorption
(C)
Distillation
(D) Extraction
59. Enzymes used for the production of alcohol from molasses are
Invertase and Zymase
(B) Protease and Peroxidase
(C) Amylase and Protease
(D) Oxidates and Amylase
60. During the production of alcohol from molasses, the pH is maintained as
(A)
4 to 5
(B) 8 to 10
(C) 1 to 2
(D) 11 to 12
61. Production of Vanaspathi from vegetable oil is established by
Hydrogenation
(B) Oxidation
(C) Reduction
(D) Cracking
62. Pearl ash is called as
(*) Potassium carbonate
(B) Magnesium carbonate
(C) Sodium carbonate
(D) Calcium carbonate
63. To impart brown colour to the glass the addition of chemical required in sodium lead glass is
(A) Nickel oxide
(B) Chromium oxide
(C) Copper oxide
(D) Magnesium oxide
64. Which type of glass can be drawn into thread (or) blown into a mat for insulation?
(※) Fiber glass
(B) Lead glass
(C) Borosilicate glass
(D) Soda lime glass
65. To reduce strain in glass objects, it is necessary to use
(A) Annealing
(B) Sintering
(C) Forming
(D) Shaping
66. The three main raw materials required in making ceramic products are
(क)
Clay, feldspar and sand
(B) $\mathrm{CaO}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaOH}$
(C)
MgSO_{4}, iron, magnesium
(D) CaO , Magnesium, iron
67. Three common types of feldspar are
(*) Potash, soda and lime
(C) Lithium, barium and magnesium
(B) Magnesium, strontium and barium
(D) Barium, lithium and strontium
68. In the petroleum products, the removal of gum, colour and odour is achieved by treating th
(*) Sulfuric acid
(B) Sodium hydroxide
(C) Water
(D) Potassium hydroxide
69. Sulphuric acid saturated with SO_{3} is called
(A) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
(O) Oleum
(B) Sulphurous acid
(D) Sulphur oxide
70. LPG stands for
(A) Liquid Petroleum Gas
(B) Liquified Petrol Gas
(C) Liquid Petrol Gas
71. Tetra-ethyl lead is added in gasoline to
(A) Increase its smoke point
(B) Reduce gum formation
(C) Reduce the pour point
72. Catalyst used in the catalytic cracking is
(A) Silica - alumina
(B) Silica gel
(C) Vanadium pentoxide
(D) Nickel
73. Catalyst used in catalytic reforming is
(A) Platinum on alumina
(B) Nickel
(C) Iron
(D) Aluminium chloride
74. The units of mass transfer coefficients could be
(A) concentration (area) / moles transferred
(B) moles transferred / time (area)
(C) moles transferred / time (area) (concentration)
(D) moles transferred/time
75. The diffusivity has the same dimensions as
(A) Absolute viscosity
(9) Kinematic viscosity
(C) Density
(D) Concentration
76. For water at $20^{\circ} \mathrm{C}$, Prandtl number $\left(\mathrm{N}_{\mathrm{Pr}}\right)$ is
(A) 0.702
(B) 7.02
(C) 70.2
(D) 702
77. The binary diffusivity of liquids varies almost as
(ल) T
(B) $T^{3 / 2}$
(C) $\quad T^{2}$
(D) T^{3}
78. Lewis number (Le) is
(4) $\mathrm{Sc} / \mathrm{Pr}$
(B) $\mathrm{Sh} / \mathrm{Pr}$
(C) $\mathrm{Pr} / \mathrm{St}$
(D) $\mathrm{St} / \mathrm{Sh}$
79. Penetration theory relates average mass transfer coefficient (K) with diffusivity (D) as
(A) $\quad K \alpha D$
(9) $K \alpha D^{1 / 2}$
(C) $K \alpha D^{1.5}$
(D) $K \propto D^{2}$
80. Welted wall tower experiment determines
(A) Molal diffusivity ${ }^{\text {(}}$
(B) Volumetric coefficient
c)
Mass transfer coefficient
(D) Diffusion coefficient
81. The by-pass stream is to
(A) Control the composition of final exit stream
(B) Utilise valuable reactants
(C) Get high extent of reaction
(D) Utilise concentrated products
82. Corresponding to Prandtl number in heat transfer, the dimensionless group in Mass transfer is
(A) Schmidt number
(B) Sherwood number
(C) Peclet number
(D) Froude number
83. Mass transfer coefficient (K) and diffusivity (D) are related according to film theory as
(ख)
$K \alpha D$
(B) $K \alpha D^{1 / 2}$
(C) $K \propto D^{1.5}$
(D) $K \alpha D^{2}$
84. Positive deviation from Raoult's law means a mixture whose total pressure is
(*) greater than that computed for ideality
(B) less than that computed for ideality
(C) less than the sum of the vapour pressure of the component
(D) such a condition cannot exist
85. Eddy momentum diffusivity, thermal diffusivity and mass diffusivity will be same for
(A) $\quad \mathrm{N}_{\mathrm{P}_{\mathrm{t}}}=\mathrm{N}_{\mathrm{S}_{\mathrm{c}}}=0.7$
(b) $N_{P_{r}}=N_{S_{c}}=1$
(C) $\quad \mathrm{N}_{\mathrm{P}_{\mathrm{r}}}=\mathrm{N}_{\mathrm{S}_{\mathrm{e}}}=7.02$
(D) $\mathrm{N}_{\mathrm{P}_{\mathrm{r}}}=\mathrm{N}_{\mathrm{S}_{\mathrm{c}}}=297$
86. Fick's second law of diffusion is
(A) $\frac{\partial C_{A}}{\partial t}=D_{A B}\left(\frac{\partial C_{A}}{\partial x}+\frac{\partial C_{A}}{\partial y}+\frac{\partial C_{A}}{\partial z}\right)$
(B) $\frac{\partial^{2} C_{A}}{\partial t^{2}}=D_{A B}\left(\frac{\partial C_{A}}{\partial x}+\frac{\partial C_{A}}{\partial y}+\frac{\partial C_{A}}{\partial z}\right)$
(C) $\frac{\partial^{2} C_{A}}{\partial t^{2}}=D_{A B}\left(\frac{\partial^{2} C_{A}}{\partial x^{2}}+\frac{\partial^{2} C_{A}}{\partial y^{2}}+\frac{\partial^{2} C_{A}}{\partial z^{2}}\right)$
(क) $\frac{\partial C_{A}}{\partial t}=D_{A B}\left(\frac{\partial^{2} C_{A}}{\partial x^{2}}+\frac{\partial^{2} C_{A}}{\partial y^{2}}+\frac{\partial^{2} C_{A}}{\partial z^{2}}\right)$
87. The transition Reynolds numbers for flow over a flat plate is 5×10^{5}. What is the distance from the leading edge at which transition will occur for flow of water with uniform velocity of $1 \mathrm{~m} / \mathrm{s}$? (for water kinematic viscosity $=0.858 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$)
(ल) 0.43 m
(B) 1 m
(C) 43 m
(D) 103 m
88. The process which transmits energy by means of electromagnetic waves is called
(A) conduction
(B) convection
(C) radiation
(D) isentropic
89. The effect of scaling in a heat exchanger is accounted through
(A) hęat transfer coefficient
(3) fouling factors
(C) insulation factors
(D) diffusivity factor
90. The ratio, $\frac{\text { surface convection resistance }}{\text { internal conduction resistance }}$, is called
(A) Grashoff number
(b) Priot number
(C) Stanton number
(D) Prandtl number
91. Dropwise condensation usually occurs on
(A) glazed surface
(B) smooth surface
(D) oil surface
(D) coated surface
92. A wire is plastically deformed by supplying a force of 40 N over a distance of 0.8 m (The force moves in the direction in which the distance is measured). If the wire has a mass of 0.2 kg and a specific heat of $0.5 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$, the maximum increase in the average temperature of the wire will be
(A) $0.03^{\circ} \mathrm{C}$
(B) $0.3^{\circ} \mathrm{C}$
(C) $3^{\circ} \mathrm{C}$
(D) $30^{\circ} \mathrm{C}$
93. From a metallic wall at $100^{\circ} \mathrm{C}$, a metallic rod protrudes to the ambient air. The temperature at the tip will be minimum at steady state when the rod is made of
(A) Aluminium
(B) Steel
(C) Copper
(D) Silver
94. In a reversible reaction, a catalyst
(A) increases the rate of the forward reaction only
(B) increases the rate of the forward reaction to a greater extent than the backward reaction
(C) increases the rate of the forward reaction and decreases the rate of the backward reaction
(D) increases the rate of the forward and the backward reaction equally
95. If a heat transfer correlation exists for a Gwen system and geometry, the mass transfer correlation may be found by replacing Nusselt number by and Prandtl number by
(A) Schmidt number, Sherwood number
(B) Sherwood number, Peclet number
(C) Grashof number, Reynolds number
96. The zero parameter model for predicting conversion from RTD data are
(A) Tanks in series model
(B) Axial dispersion model
(a) Segregated flow model
(D) Radial dispersion model
97. Sperical particles react with gas of given composition and at a given temperature to give a solid product. If the solid follows the shrinking core model reaction controlling, the time for complete conversion is
(M) Proportional to the diameter of the particles
(B) Proportional to the square of the diameter of the particles
(C) Proportional to the diameter of the particle raised to 1.5
(D) Independent of the particle size
98. For cylindrical particles, following the shrinking care model. The time for complete conversion when reaction is the controlling mechanism is given by
(A) $T=\frac{\rho_{B} L}{b k_{s} C_{A g}}$
(4) $T=\frac{\rho_{B} R}{b k_{s} C_{A g}}$
(C) $T=\frac{\rho_{B} R}{6 b k_{s} C_{A g}}$
(D) $T=\frac{\rho_{B} L}{6 b k_{s} C_{A g}}$
99. A solid product is obtained for a spherical solid which follows the shrinking core model. If the solid particle is $7 / 8$ converted in one hour and completely converted in 2 hours, which mechanism is rate controlling
(A) Mass transfer through the gas film
(B) Diffussion through the product layer
(C) Reaction on the surface of the core
(D) Reaction within the product layer
100. For the chemical reaction $A \rightarrow B$, it is found that the rate of the reaction quadruples hen the concentration A is doubled. If the rate is proportional to $C_{A}{ }^{n}$ then ' n ' must be
(A) $1 / 4$
(B) 2
(C) 1
(D) 4
101. For a chemical reaction $A \rightarrow B$, it is found that the rate of the reaction triples when concentration of ' A ' is increased 9 times. If rate is proportional to $C_{A}{ }^{n}$ then ' n ' for this reaction must be
(凶) $1 / 2$
(B) $1 / 3$
(C) 3
(D) 9
102. For reactions that are externally mass transfer limited, the overall rate of reaction increases by
(A) Decreasing the gas velocity and particle size
(B) Increasing gas velocity and particle size
(d) Increasing the gas velocity and decreasing the particle size
(D) Decreasing the gas velocity and increasing the particle size
103. There is no correspondence between stoichiometry and the rate equation is the case of a/an
(A) elementary reaction
(B) multiple reaction
(C) auto catalytic reaction
(D) non-elementary reaction
104. When internal diffusion controls in a catalystic reaction, the true reaction order is related to
the measured reaction order by
(s) $\mathrm{n}_{\text {true }}=2 \mathrm{n}_{\text {apparent }}{ }^{-1}$
(B) $\mathrm{n}_{\text {true }}=1 /\left(2 \mathrm{n}_{\text {apparent }}{ }^{-1}\right)$
(C) $n_{\text {true }}=1-2 n_{\text {apparent }}$
(D) $\quad n_{\text {true }}=\frac{1}{1-2 n_{\text {apparent }}}$
105. The Weisz - Prater parameter is $\left(C_{w p}\right)$
(ब) - r_{A}^{\prime} (observed) $\rho_{\mathrm{c}} \mathrm{R}^{2} / \mathrm{D}_{\mathrm{e}} \mathrm{C}_{\mathrm{AS}}$?
(B) $\quad-r_{A}^{\prime}$ (intrinsic) $\rho_{c} R^{2} / D_{e} C_{A S}$
(C) $\mathrm{D}_{\mathrm{e}} \mathrm{C}_{\mathrm{AS}} /-r_{A}^{\prime}$ (observed) $\rho_{\mathrm{c}} \mathrm{R}^{2}$
(D) $\mathrm{D}_{\mathrm{e}} \mathrm{C}_{\mathrm{AS}} /-r_{A}^{\prime}$ (intrinsic) $\rho_{\mathrm{c}} \mathrm{R}^{2}$
106. In certain multiphase reactors, the liquid phase in an inert medium for the gas to contract the solid catalyst, this arises when
(A) a large heat sink is required for highly exothermic reactions
(B) a large heat source is required for a highly exothermic reaction
(C) a large heat sink is required for a highly endothermic reaction
(D) a large heat source is required for a highly endothermic reaction
107. The exit ape distribution of fluid leaving a vessel is used to
(A) study the reaction mechanism
(D) 1 study the extent of non ideal flow in the reactor
(C) to know the reaction rate constants
(D) know the activation energies of a reaction
108. A catalyst
(A) initiates a reaction
(B) lower's the activation energy of reacting molecules
(C) is capable of reacting with any one of the reactants
(D) cannot be recovered chemically uncharged at the end of a chemical reaction
109. For the unimolecular - type elementary reactions $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$ the fractional yield of R is always
(A) same in plug flow and mixed reactors for a given conversion of A
(B) lower for plug - flow reactors than for mixed reactor for any conversion level of A
(C) higher for plug - flow reactors than for mixed reactor for any conversion level of A
(D) same in plug flow, batch and mixed reactors for a given conversion of A
110. For the unimolecular - type elementary reactions $A \xrightarrow{k_{1}} R \xrightarrow{k_{2}} S$ the fractional yield of ' R ' in mixed reactor for a given conversion of A
(A) Remains constant with change in k_{2} / k_{1}
(B) Increases with increase in k_{2} / k_{1}
(C) Decreases with increase in k_{2} / k_{1}
(D) Increases linearly with increase in k_{2} / k_{1}
111. The size of a mixed flow reactor is always smaller than the size of a plug flow reactor when the order of the reaction is
(A) zero
(C) positive orders
(B) first order
(D) negative orders
112. For an elementary reaction $X+2 Y \rightarrow 3 Z$
(A) Rate of disappearance of Y is equal to the rate of appearance of Z
(B) The rate of disappearance of Y is equal to the rate of disappearance of X
D) Three times the rate of disappearance of X is equal to the rate of appearance of Z
(D) Rate of disappearance of X is equal to the rate of appearance of Z
113. Two small samples of solids are introduced into a constant environment over and kept there for one hour, where the 2 mm particle is completely converted, what would be the conversion for the 4 mm particle after 1 hour if reaction is controlling
(A) 0.25
(B) 0.5
(C) 0.75
(D) 0.875
114. Generally, valves are sized so that $T \cong$ (where $\mathrm{T}:$ Turndown $=\mathrm{R}=$ Rangeability)
(A) $\begin{aligned} & 0.7 \mathrm{R} \\ & \text { (C) } \\ & 30 \mathrm{R}\end{aligned}$
(B) 20 R
(C) 30 R
(D) 0.001 R
115. The rangeability is defined as

maximum controllable flow / minimum controllable flow
(B) minimum controllable flow / maximum controllable flow
(C) maximum controllable flow - minimum controllable flow
(D) normal maximum flow / minimum controllable flow
116. If the difference between 180° and the phase lag at the frequency for which the gain is unity is negative, then the system
(A) is stable
(B) is unstable
(C) is critically stable
(D) insufficient information to determine the stability
117. Find out the wrong statement :

The characteristic equation for the control system.
(A) determines its stability
(B) is the same for set point and load changes
(C) depends only upon the open - loop transfer function
(D) is equal to the process transfer function
105. Local atmospheric pressure is measured by
(A) a Bourdon gauge
(B) a memory Barometer
(C) a manometer
(D) a hot-wire anemometer
106. Select the wrong statement:

Routh test for stability of control systems.
(A) is an algebraic method to find out the stability
(B) does not involve any plot or diagram
(C) is applicable only to systems with polynomial characteristic equations
(D) gives information about degree of stability
107. The number of poles in the open-loop transfer function $G(s)=\frac{1}{s^{3}+6 s^{2}+11 s+6}$ are
(A) 1
(B) 3
(C) 2
(D) 0

The characteristic equation for the control system with a closed loop transfer function $\frac{\pi_{f}}{1+G}$ is
(A) $\frac{\pi_{f}}{1+G}=0$
(B) $1+G=0$
(C) $\quad G=0$
(D) $\pi_{f}=1+G$
109. The amplitude ratio of first order system $\left(\frac{1}{\tau s+1}\right)$ is given as
(4) $\frac{1}{\sqrt{1+w^{2} \tau^{2}}}$
(B) $\frac{1}{\sqrt{1-w^{2} \tau^{2}}}$
(C) $\sqrt{1+w^{2} \tau^{2}}$
(D) $\frac{1}{1+w^{2} \tau^{2}}$
110. The roots of the characteristic equation are called
(A) zeros
(D) poles
(C) eigen values
(D) inflection points
111. Which of the following is the algebraic method?
(A) Routh test
(B) Bode test
(C) Nyquist test
(D) Root-locus test
112. If the roots of characteristic equation lie on the left half of the complex plane, then the system is
(A) stable
(B) unstable
(C) critically stable
(D) cannot comment about stability
113. In Servo test
(A) No change in set point
(D) Set point change occurs
(C) Change in load occurs
(D) Load increased
114. The reduction of following block diagram yields

115. The transfer function of first order plus dead time system is
(A) $\frac{K}{\tau_{p} S+1} e^{\tau S}$
(D) $\frac{K}{\tau_{p} S+1} e^{-\tau S}$
(C) $\frac{K}{\left(\tau_{p} S+1\right)} e^{-t S}$
(D) $\frac{K}{\tau_{p} S+e^{-\tau S}}$
116. Identify the nature of the system having the following transfer function $\frac{Y(s)}{X(s)}=\frac{10}{s^{2}+1.6 s+4}$
(x) under damped
(B) critically damped
(C) over damped
(D) undamped
117. The time required for the response to complete one cycle is known as
(C)
period of oscillation
(B) rise time
response time
(D) settling time
118. Critically damped response of a second order system is
(4) non-oscillatory
(B) oscillatory
(C) oscillatory with constant amplitude
(D) oscillatory with increasing amplitude
119. V-tube type mercury manometer is an example of
(A) Zero - order system
(B) First - order system
(6)
Second - order system
(D) Third - order system
120. The response of an interacting system is \qquad non-interacting system response.
(A) higher than
(D) slower than
(C) equal to
(D) very much higher than
121. A second order differential equation of the form $\frac{d^{2} y}{d x^{2}}=g\left(x, y, \frac{d y}{d x}\right)$ can be solved by the Runge-Kutta method by breaking it down to the form
(A) $\quad d x / d y=z=f(x, y) ; d z / d y=g(x, y)$
(B) $\quad d y / d x=z=f(x, y) ; d z / d x=g(x, y)$
(b) $d y / d x=z=f(x, y, z) ; d z / d x=g(x, y, z)$
(D) $\quad d x / d y=z=f(x, y, z) ; d z / d y=g(x, y, z)$
12. The Milne's corrector formula cannot be used as a formula of extrapolation since it requires the value of \qquad which is not known.
(4) y_{n+1}^{\prime}
(B) y_{n}^{\prime}
(C) $\quad y_{n-1}^{\prime}$
(D) y_{n-2}^{\prime}
123. The Adam - Bashforth prediction formula is given as
(A) $y_{n+1}=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]$
(B) $\quad y_{n+1}=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5-y_{n-1}^{\prime}+y_{n-2}^{\prime}\right]$
(C)

$$
y_{n+1}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+4 y_{n}^{\prime}+y_{n+1}^{\prime}\right]
$$

(D) $y_{n+1}=y_{n-3}+\frac{4 h}{3}\left(2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right)$
124. In order to use Adam's Method for solving an ordinary differential equation and obtain the required value of y, what number of values of y prior to the required value is needed
(A) 1
(B) 2
(C) 3
(D) 4
125. The forward first-difference quotient of $u(x, y)$ w.r.t x is given as
(A) $u_{x}=\frac{u(x, y)-u(x-h, y)}{h}$
(B) $u_{x}=\frac{u(x+h, y)-u(x-h, y)}{h}$
(c) $u_{x}=\frac{\dot{u}(x+h, y)-u(x, y)}{h}$
(D) $u_{x}=\frac{u(x+h, y+h)-u(x, y)}{h}$
126. Which one of the following is not an iterative method for solving algebraic equations?
(A) Gaussian elimination method
(B) Gauss-Seidel method
(C) Relaxation method
(D) Gauss-Jacobi method
127. Modified Euler's method is the Runge-Kutta method of
(A) first order
(B) second order
(C) third order
(D) fourth order
128. What is the order of error of the Euler's method?
(A) h
(B) h^{2}
(C) h^{3}
(D) h^{4}
129. State the condition for the equation $A u_{x x}+2 B u_{x y}+C u_{y y}=f\left(u_{x}, u_{y}, x, y\right)$ to be elliptical
(A) $B^{2}-4 A C<0$
(B) $2 B^{2}-4 A C<0$
(C) $4 B^{2}-4 A C>0$
(D) $B^{2}-A C<0$
130. The one dimensional wave equation of the form $\frac{\partial^{2} u}{\partial x^{2}}=a \frac{\partial^{2} u}{\partial t^{2}}$ is a
(A) Laplace's equation in two dimension
(B) Poisson's equation
(C) Parabolic equation
(D) Hyperbolic equation
131. A differential equation is said to be parabolic in a region R if $B^{2}-4 A C$ is
(A) positive
(B) negative
zero
(D) infinity
132. The Schmidt relation reduces to the Bender - Schmidt when the value of k is chosen such that the coefficient of $u_{i, j}$ becomes
(A) 0
(B) 1
(C) ∞
(D) -1
133. The solution obtained by using Schmidt recurrence equation for the solution of ordinary differential equation is stable only when λ is
(A) $\geq 1 / 2$
(B) $\leq 1 / 2$
(C) $\leq 1 / 4$
(D) $\geq 1 / 4$
134. The Regula Falsi method is also known as
(A) method of tangents
(B) method of chords
(C) method of lines
(D) method of approximation
135. The condition for convergence of Newton - Raphson method is
(4) $\left|f(x) \cdot f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2}$
(B) $\left|f(x) \cdot f^{\prime}(x)\right|<\left|f^{\prime \prime}(x)\right|^{2}$
(C) $\left|f^{\prime}(x) \cdot f^{\prime \prime}(x)\right|<|f(x)|$
(D) $\left|f(x) \cdot f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|$

1. In the solution of algebraic equations the method of tangents is also known as
(A) Bisection method

- Newton Raphsoṇ method
(C) Bolzano method
(D) Regula Falsi method

137. In the iteration method, if $\left|\phi^{\prime}(x)\right|>1$ the process
(A) will converge
(1) will not converge
(C) can easily be solved
(D) the reciprocal of the root can be obtained
138. The number of conditions required to solve the La Place equation is
(A) 1
(B) 2
(C) 3
© 4
139. Which one of the following method is not used to solve algebraic equations?
(A) Bolzano method
(B) Horner's method
\Leftrightarrow Milne's method
(D) Regula Falsi method
140. Which one of the following is a transcendental equation?
(A) $x^{3}-3 x+1=0$
-1 $3 x+\sin x-e^{x}=0$
(C) $x^{4}+2 x^{3}-3 x^{2}+2 x+1=0$
(D) $x+4 x^{2}+x^{3}=5$
141. What is the reflux ratio at total reflux?
(A) zero
(c) infinity
(C) unity
(D) data insufficient
142. The reflux to a distillation column is $100 \mathrm{moles} / \mathrm{hr}$, when the overhead product rate is $50 \mathrm{moles} / \mathrm{hr}$, the reflux ratio is

(B) 0.5
(C) 50
(D) 150
143. When the feed to a distillation column is a saturated liquid, slope of the feed line is
(A) zero
-f unity
(C) infinity
(D) less than zero
144. Desirable value of absorption factor in an absorber is
(A) 1
(B) <1
() >1
(D) 0.5
145. Dry bulb temperature of the gas is \qquad the wet bulb temperature.
(A) less than
(D) more than
(C) equal to
(D) half of the
146. In extractive distillation, solvent is

A added to alter the relative volatility of the original constituents
(B) added to increase the viscosity of the mixture
(C) added to increase the density of the mixture
(D) to maintain the viscosity as constant
147. Rayleigh equation applies to _distillation.
$(1$
Differential
(B) Flash
(C) Evaporative
(D) Molecular
148. Selectivity of the solvent used in solvent extraction should be
(A) $=1$
(>1
(C) <1
(D) $=0$
149. Chemisorption is
(A) same as 'under walls' adsorption
(B) physical adsorption
∞ an irreversible phenomenon
(D) a reversible phenomenon
150. Physical adsorption is
(A) an irreversible phenomenon
(1) a reversible phenomenon
(C) the result of chemical interaction
(D) stronger than chemisorption

1 In adsorption, the adsorbed substance is called
(A) adsorbent

Aadsorbate
(C) solvent
(D) sorbent
152. Bollman extraction
(A) is a static bed leaching equipment
(-) is used for extraction of oil from oil seed
(C) is a centrifugal extractor
(D) is a super critical extractor
153. Milk is dried usually in a dryer.
(A) freeze
N) spray
(C) tray
(D) rotary
154. In a paper industry, paper is dried in a \quad dryer.
(A) Tunnel
(d) Heated cylinder
(C) Conveyor
(D) Spray
155. Flights in a rotary dryer are provided to
A) Lift and shower the solids thus exposing it thoroughly to the drying action of the gas
(B) Reduce the residence time of solid
(C) Increase the residence time of solid
(D) Increase the flow of gas
156. Rotary dryers cannot handle materials.
(A) Free flowing
(B) Dry
(d) Sticky
(D) Granular
157. Refractory bricks are usually dried in a dryer.
(A) Tray
(1)
Tunnel
(C) Conveyor
(D) Festoon
158. Dryer widely used in a textile industry is \square dryer.
(A) Festoon
C) Cylinder
(C) Conveyor
(D) Tunnel
159. Detergent solution is dried to a powder using .
A Spray dryer
(B) Tunnel dryer
(C) Cylinder dryer
(D) Rotary dryer
160. Swenson-Walker crystallises is a unit.
A) Continuous
(B) Batch
(C) Semi batch
(D) Fed batch
161. The minimum concentration of oxidizer required for ignition at ambient temperature is known as

d
Limiting oxygen index
(B) Lower flammable limit
(C) Upper flammable limit
(D) Threshold limit value
162. The Flammability limits of mixture can be estimated from the data for individual fuels by using
(*)
Le Chatelier's principle
(B) Joule-Thompson principle
(C) Amagat's principle
(D) Trouton's principle
163. If the concentration of a mixture of fuel gases is known, the LFL for the mixture can be approximated from (where $\mathrm{P}_{\mathrm{i}}=\%$ of fuel in the original mixture, free from air and inert gases)
(v)
$(\mathrm{LFL})_{\text {mix }}=100 / \sum\left(\mathrm{P}_{\mathrm{i}} / \mathrm{LFL}_{\mathrm{i}}\right)$
(B) $(\mathrm{LFL})_{\text {mix }}=\sum\left(\mathrm{P}_{\mathrm{i}} / \mathrm{LFL}_{\mathrm{i}}\right) / 100$
(C) $(\mathrm{LFL})_{\text {mix }}=\sum \mathrm{LFL}_{\mathrm{i}} / 100$
(D) $(\mathrm{LFL})_{\text {mix }}=\sum \frac{100}{\mathrm{LFL}_{\mathrm{i}}}$
164. Systematic technique used for identifying all plant or equipment hazards and operability problems is
(M) Hazard and operability study
(B) Hazardous and operational study
(C) Hazard analysis study
(D) Operational analysis study

1 Which one of the following is not a formalized hazard assessment technique?
(A) Hazard and operability study
(B) Fault tree analysis
(C) Failure mode and effect analysis
(1 False tree analysis
166. The method used to estimate the likelihood of an accident by breaking it down into its contributing sequences is
1
Fault tree analysis
(B) HAZOP
(C) Failure mode and effect analysis
(D) Safety audit
167. The method used for analyzing hazardous events after they have been identified by other techniques such as HAZOP is
(A) Fault tree analysis
(B) Failure mode and effect analysis
(C) Safety Audits
(D) Safety indexes
168. Among the following, which method uses logic diagram?
(A) HAZOP
(A)
Fault tree analysis
(C) Safety analysis
(D) Failure mode and effect analysis
169. The symbol used where coincident lower-order events are necessary before a more serious higher-order event is
(1) And
(B) Or
(C) Nor
(D) Neither
170. The method that focuses only on component failure and does not consider errors in operating procedures is
(1 Failure mode and effect analysis
(B) Fault tree analysis
(C) HAZOP
(D) Safety analysis
171. With respect to Environmental protection, BAT stands for
(A) Biological Activation Treatment
(1) Best Available Technology
(C) Biological Aerobic Treatment
(D) Bioavailable Technology
172. The chemicals which upset the stability of the system by neutralizing the colloid charg

- Alum and Ferric chloride
(B) Ferrous sulfate and chlorine
(C) Ozone and chlorine
(D) Hydrogen Peroxide and ferrous sulfate

173. Which of the following is not the widely used chemical oxidant in waste water treatment?
(A) Ozone
(B) Chlorine
(C) Hydrogen peroxide
D) Hydrogen chloride
174. Among the following, which process is more difficult to control?
N)
Anaerobic treatment
(B) Aerobic treatment
(C) Trickling filter
(D) Activated sludge process
175. The temperature at which ignition will occur without the presence of a spark or flame is designated as the
(A) Ignition temperature
(C) Lower flammable limit
Auto ignition temperature
(D) Upper flammable limit
176. Chloramines are used in water treatment
(4) for disinfection
(B) for taste and odour control
(C) as algicides
(D) for weed control in reservoirs
177. Which of the following devices of particulate collector is the least efficient?
v
Cyclone separator
(B) Electro state precipitator
(C) Fabric filter
(D) Wet scrubber
178. Which of the following factors is not considered during the selection of fabric used in fabric filter?
(A) Temperature
(B) Chemical resistance
(C) Dust concentration

- Temperature to fabric ratio

ACFCHE

1. Which of the following is used in cement industry for dust control? .
(A) Cyclone separator
(C) Wet scrubber
() Electro static precipitator
(D) Fabric filter
2. The release of gases and vapour to the atmosphere cannot be controlled by
(A) Combustion
(B) Absorption
(C) Adsorption
(1) Extraction
3. The difference between the selling price of the product and the purchase cost of raw materials is known as
($)$ Added value
(B) Differentiated value
(C) Undifferentiated value
(D) Subtracted value
4. Cost data are expressed as a power law of capacity and is given as (C_{E} : Equipment cost with capacity Q
C_{B} : Known base cost for equipment with capacity Q_{B}
M : Constant depending on equipment type)
v) $C_{E}=C_{B}\left(Q / Q_{B}\right)^{M}$
(B) $\mathrm{C}_{\mathrm{E}} \doteq \mathrm{C}_{\mathrm{B}}\left(\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{Q}}\right)^{M}$
(C) $\quad C_{E}=Q_{B}\left(\frac{C_{B}}{Q}\right)^{M}$
(D) $\quad C_{E}=Q\left(\frac{C_{B}}{Q_{B}}\right)^{M}$
5. Which of the following is not an utility investment?
(A) Electrical generation equipments investment
(B) Steam generation equipments investment
(C) Steam distribution equipments investment
() Control system equipments investment
6. The cost of services includes
(1) Cost of the utilities and off sites
(B) Cost of the utilities and battery limit
(C) Cost of the off sites and battery limit
(D) Cost of the utility alone
7. The symbol of Reboiler is
(A)

(B)

(D)

8. The split fraction coefficient depends on the nature of the unit and the inlet stream composition
(B) nature of the unit and the outlet stream composition
(C) nature of the unit and the direction of stream from
(D) nature of the unit and number of processes
9. In a flow sheet, the table stream flows and other data can be placed at
(A) left hand side of the layout
(B) right hand side of the layout

- above or below the equipment
(D) between the equipment

188. On the detailed flow sheet representation used for design and operation, the equipment is normally provided by
(A) small in size
(B) large in size
(C) moderate in size
4
pictorial form
189. Batch process as compared to continuous process is preferred due to when
(A) sales demand is steady
(B) same equipment can be used for several processes of this nature

- continuous process equipment has not been satisfactorily developed
(D) service requirements is not steady

A centrifuge can be represented by
N

(C)

(B)

(D)

191. Relative roughness of the pipe can be calculated using

1) Relative roughness $=\frac{\text { absolute roughness }}{\text { pipe inside diameter }}$
(B) Relative roughness $=\frac{\text { absolute roughness }}{\text { pipe outside diameter }}$
(C) Relative roughness $=\frac{\text { pipe roughness }}{\text { pipe inside diameter }}$
(D) Relative roughness $=\frac{\text { pipe roughness }}{\text { pipe outside diameter }}$
192. A horizontal gas liquid separator would be selected for a process when a
 long liquid hold-up time is required
(B) long gas hold-up time is required
(C) long residence time required
(D) long residence time is zero
193. Sometimes batch process is preferred when yield and quality of products cannot be achieved in continuous process because of
(A) high reaction rate
(B) low reaction rate
(C) short residence time
(D) long residence time
194. Hydroclones can be used for the classification of solid particles over a size range of
(A) 5 to $25 \mu \mathrm{~m}$
(B) 5 to $45 \mu \mathrm{~m}$
(C) 5 to $50 \mu \mathrm{~m}$
195. Which one of the following common problem is encountered in chemical process equipme
(A) Rigidity of equipment

Corrosion
(C) Fabricational feasibility
(D) Non-uniformity of material
196. Which one of following compensation is most efficient for the opening of a process vessel
(A) Flued in type
y Rim or nozzle type
(C) Ring plate
(D) Protruding type
197. Identify the flow sheet symbol of lines
(1)
(2)
(3)
(4)
(1) (1) new lines, (2) existing lines, (3) underground lines, (4) instrument lines
(B) (1) existing lines, (2) new lines, (3) instrument lines, (4) underground lines
(C) (1) instrument lines, (2) new lines, (3) existing lines, (4) underground lines
(D) (1) underground lines, (2) existing lines, (3) new lines, (4) instrument lines
198. Inventory turnover ratio is
(1) Net sales / Inventory
(C) Profit/Net sales
(B) Inventory / Net sales
(D) Net sales / Net loss
199. Equipments should be positioned in such a manner that the cost is minimum.
(A) Raw material
(1) Piping
(C) Labour
(D) Stationary
200. Pressure and temperature indicator position should be at level.
eye
(B) above head
(C) chest
(D) below chest

