Sl. No.:

50001204

		A	H		V	E
Register Vumber		0		6		+

2014 CIVIL ENGINEERING

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series without any omission and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you separately by the invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination.

 After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. In all matters and in cases of doubt, the English Version is final.
- 13. Do not tick-mark or mark the answers in the Question booklet.

SPACE FOR ROUGH WORK

50001204

ACFCVE

1	A go	od buil	lding sto	ne shoul	ld not al	bsorb water m	ore tha	an
	(AS)	5%				(B)	10%	
	(C)	15%				(D)	20%	
2.	The	proces	s of mixi	ng clay	water a	nd other ingre	dients	to make brick is known as
	JAST	Kne	ading			(B)	Mou	ulding
	(C)	Pug	ging			(D)	Dryi	ing
3.	Mate	ch List	I with I	ist II an	id select	t the correct ar	nswer	using the codes given below the list
		List I				List II		
	(a)	Gran	ite		1.	Ornamental	work	
	(b)	Marb	le		2.	Ballast		
	(c)	Chall	k		3.	Rough stone	work	
	(d)	Later	rite		4.	Manufacture	e of cer	ment
	Code	es:						
		(a)	(b)	(c)	(d)	2.50		
	(A)	3	1	2	4			
	(B)	2	3	1	4			
	Jes	2	1	4	3			
	(D)	1	4	2	3			
4.	Asse	ertion ((A):	Pure lin	ne takes	s a long time to	devel	lope adequate strength.
	Reas	son (R)	:	Pure lin	ne has l	ow harding ch	aracte	ristics.
	Sele	ct your	answer	accordin	ng to the	e coding syster	n give	n below
	JAS	Both	n (A) and	(R) are	true ar	nd (R) is the co	rrect e	explanation of (A)
	(B)	Both	(A) and	(R) are	true ar	nd (R) is not th	e corre	ect explanation of (A)
	(C)	(A) i	s true b	ut (R) is	false			
	(D)			ut (R) is				
	(D)	(11) 1	is raise o	at (10) 15	uruc			
5.	The	expose	ed edges	of stones	s are be	velled for a de	pth of	2.5 cm in a
	(A)	Ash	lar rougl	n tooled	masonr	y (B)	Ashl	lar rock face masonry
	res	Ash	lar cham	fered ma	asonry	(D)	Ashl	lar block in course
6.	As t	he cen	nent con	crete is v	weak in		steel 1	reinforcement is placed in it and th
	is te	rmed a	as reinfo	rced cem	ent con	crete		
	JAS	Tens	sion			(B)	Com	npression
	(C)	Shea	ar			(D)	Shri	inkage
4	100						1	

7.	R.C.C	C. can be made free from rusting an	d corrosio	n with proper
	(A)	Cement grade	(B)	Aggregate
	(C)	Compaction	SON	Cover
8.		compressive strength of concrete — (other things being the same)		- in general with increase in water cement
	(A)	increases	(B)	does not changes
	Jer	decreases	(D)	gets multiplied
9.	The p	process of reducing the moisture fro	m timber	is known as
	(A)	boiling	(B)	seasoning
	(C)	curing	(D)	setting
10.	The	placing of veneers normal to ea	ch other	increases the strength of
	JAS	Longitudinal and transverse	(B)	Transverse
	(C)	Longitudinal	(D)	Compressive
11.	Poly	Vinyl chloride (PVC) is a product. V	Which of th	ne following is not relevant to this?
	(A)	Obtained from Vinyl chlorides an	d acetate	
	(B)	Resists attacks by acids and alka	lis	
	(C)	Which is light weight and withsta	and wear a	and tear
	JOS	It is fire resistance		
12.	The p		combined	action of atmospheric and other factors is
	(A)	Hardness	(B)	Toughness
	Jer	Durability	(D)	Strength
13.	This	type of bond in brick work consist of	of alternat	e courses of headers and stretchers
	(A)	English bond	(B)	Flemish bond
	(C)	Stretcher bond	(D)	Header bond
14.	This	bond is considered to be the strong	est bond in	n brickwork
	(A)	Flemish bond	(B)	Header bond
	(C)	Stretcher bond	SON TO	English bond

19.		a perfectly smooth appearance	sides a	nd face are linely chisel dressed and this
	(A)	Coursed rubble masonry	(B)	Ashlar masonry
	(C)	Uncoursed rubble masonry	(D)	Random rubble masonry
16.	Cons	ider the statements :		
	(I)	Cost of construction of stone masonr	y is mor	e than that of brick masonry
	(II)	The mortar joints are thick in stone	masonr	y than that of brick masonry
	(III)		an la	
	(IV)		rk	
		e above statement :	(D)	IV alone is correct
		I and III are correct	(B)	
	(10)	I, II, IV are correct	(D)	All are correct
17.	The	usual concrete mix used for lintel is		情以 1. 1 max m 7/10 数数数。
	(A)	1:3:6	(B)	1:2.5:5
	sor	1:2:4	(D)	1:1.5:3
18.	Rein	forced cement concrete is equally stro	ng in ta	king
	(A)	tensile and compressive stresses	(B)	tensile and shear stresses
	(C)	compressive and shear stresses	(B)	tensile, compressive and shear stresses
19.	An e	xample of accelerator in cement concr	ete is	
	JAT	$CaCl_2$	(B)	CaSO ₄
	(C)	Na_2SO_4	(D)	NaCl
20.	A cav	vity wall is constructed to resist		
	(A)	axial force	(B)	wind loads
	John	heat flow	(D)	dampness
21.	The	curvature of the earth is taken into co	nsidera	tion if the area of survey is,
	(A)	100 – 150 km ²	(B)	50 – 100 km ²
	(C)	$150 - 200 \text{ km}^2$	DI DI	more than 200 km ²
22.	river			artificial features of a country, such as nals, towns and villages, the surveying
	JAY	Topographical surveying	(B)	Reconnaissance surveying
	(C)	Location surveying	(D)	City surveying

23. The surveying done for obtaining maps to determine urban and rural details s boundaries of fields, houses and other property intended for taxation and revenue is called					
	(A)	Geographical surveying	(B)	Geodetic surveying	
	Con	Cadastral surveying	(D)	Urban surveying	
24.	An in	nvar tape is used for length m		very high accuracy, because	it possesses
	(A)	Zero	(B)	Very low	
	(C)	Low	(D)	High	
25.	If the	e distance measured between		s on the ground is along a s	lope, only it
	(A)	vertical component	(B)	horizontal component	
	(C)	length along the slope	(D)	both (B) and (C)	
26.	The e	error in measured length due	to sag of chain o	or tape is known as	
	(A)	Cumulative error, positive	or negative		
	(B)	Compensating error, positiv	ve		
	(C)	Compensating error, positiv	ve or negative		
	(D)	Cumulative error, positive			
27.	The l	ongest chain line passing thr	ough the center	of the area is called	
	(A)	tie line	(B)	diagonal line	
	(C)	check line	Dr.	base line	
28.	Ina	whole circle bearing system,	S 25° 15' E corre	esponds to	
	(A)	115° 15′	(Br	154° 45′	
	(C)	205° 15′	(D)	334° 45′	
29.	If the	e fore bearing of a line is N 2	6° 35′ W, its bac	k bearing will be	
	CAY	S 26° 35′ E	(B)	S 26° 35′ W	
	(C)	N 26° 35′ E	(D)	N 53° 25′ W	
30.	In a	level if the temperature incre	eases the sensiti	vity of a bubble tube	
00.	(A)	increases		decreases	
	(C)	remain constant	(D)	none of these	
	(0)		(2)		

31.	The method of differential leveling is used in order to find the difference in elevation between two points when										
	(A)	they are far apart									
	(B)	the difference in elevation between	the two	stations is great							
	(C)	both the stations are not inter-visil	ble -								
	JB)	all of the above									
32.	Whic	Which of the following statement is not correct?									
	(A)	The slope is steeper when the conte	ours are	close							
	(B)	Contour lines of the same elevation cannot merge together or cross									
	ses	The slope is not uniform where the contours are equally spaced									
	(D)	Contour lines of different elevation	can mer	ge only for a vertical cliff							
33.	The	clinometer is an instrument used for	measuri	ng very accurately							
	(A)	horizontal angles	(B)	vertical angles							
	(C)	horizontal and vertical angles	(D)	linear measurements							
34.				tion and reiteration are used to obtain he instrument is capable of measuring							
	(A)	lesser than	BY	finer than							
1	(C)	equal to	(D)	not equal to							
35.		eodolite traverse angles between the									
	JA)	observed directly	(B)	observed indirectly							
	(C)	not deduced	(D)	none of the above							
36.	Whic	h is an odd instrument with regard t	o levellir	ng?							
	(A)	Altimeter	(B)	Clinometer							
	(C)	Abney hand level	SON'	Planimeter							
37.	Proce	ess of turning the telescope about the	vertical	axis in a horizontal plane is called							
	(A)	reversing	(B)	transiting							
	(C)	plunging	OD)	swinging							

38.		method of surveying is een stations fixed by trian			or filling details
	(A)	Theodolite surveying	(B)	Triangulation	
	108	Plane table surveying	(D)	Tacheometric surveying	

- 39. The method of plane tabling used to locate the position of the instrument station on the drawing sheet with respect to other stations is known as
 - (A) traversing (B) intersection (D) radiation
- 40. In triangulation the station selected close to the main station for avoiding intervening obstruction is called
 - (A) eccentric station (B) pivot station
 (C) tie station satellite station
- 41. Match List I with List II and select the correct answer by using codes given below the lists:

List I List II Ratio of applied load and area of (a) Strain 1. cross-section of the loaded section Ratio of the change in length and 2. Ultimate stress original length of the loaded section (c) Radio of maximum load and 3. Young's modulus of elasticity original area of cross-section Ratio of stress and strain Unit stress (d)

Codes:

- 42. Moment of inertia of a circular section of dia 'D' about the centroidal axis is
 - (A) $\frac{\pi D^3}{64}$ (D) $\frac{\pi D^4}{64}$ (C) $\frac{\pi D^3}{32}$ (D) $\frac{\pi D^4}{32}$

43. Consider the following statements:

Assertion (A): For the same shear force, maximum shear stress developed in circular

section is lesser than in the rectangular section

Reason (R): Circular section is stronger in shear

Of these statements:

(A) (A) is true and (R) is false

(B) (A) is false and (R) is true

(O) Both (A) and (R) are True

(D) Both (A) and (R) are false

44. Which of the following statement is wrong?

- (A) The deformation of the bar per unit length in the direction of the force is called linear strain
- (B) The Poisson's ratio is the ratio of lateral strain to the linear strain
- (C) The ratio of change in volume to the original volume is called volumetric strain
- The bulk modulus is the ratio of linear stress to the linear strain
- 45. When a body is subjected to a direct tensile stress (p) in one plane accompanied by a simple shear stress (q), the maximum normal stress is

$$\frac{p}{2} + \frac{1}{2}\sqrt{p^2 + 4q^2}$$

(B)
$$\frac{p}{2} - \frac{1}{2}\sqrt{p^2 + 4q^2}$$

(C)
$$\frac{p}{2} + \frac{1}{2}\sqrt{p^2 - 4q^2}$$

(D)
$$\frac{p}{2} - \frac{1}{2} \sqrt{p^2 - 4q^2}$$

46. Modulus of resilience is the

- (A) Energy stored in a body when strained within elastic limits
- (B) Energy stored per unit volume in a body when strained upto the breaking of the specimen
- (C) Maximum strain energy per unit volume which can be stored in a body at ultimate stress

None of the above

47. Which of the following statement is correct?

(A) A continuous beam has only two supports at the ends

A uniformly distributed load spreads uniformly over the whole length of a beam

(C) The bending moment is maximum where shear force is maximum

(D) At the point of contraflexure, the bending moment is maximum

48.	rema	in plane after bending	g. This assumption mea	n is that the plane sections before bending
	(A)	stress is uniform thr		
	(B)	strain is uniform the		
	(C)		d to the distance from t	
	CO9	strain is proportiona	al to the distance from t	the neutral axis
49.			a of a solid circular sha	aft of diameter (d) is
	- (A)	πd^3	(P)	πd^3
	(A)	16	(D)	32
	100	πd^4		πd^4
	(A)	32	(D)	$\frac{\pi d^3}{32}$ $\frac{\pi d^4}{64}$
50.		ue test is carried out		
	(A)			al value, but of opposite sign
	(B)			qual value, but of opposite sign
	(C)		ween two limits of une	qual value, but of same sign
	WBT	All of the above		
51.	The	property of a material	by which it can be bear	ten or rolled into plates is called
	W	Malleability	(B)	Ductility
	(C)	Plasticity	(D)	
52.		phenomenon of slow	extension of materials	having constant load, i.e increasing with
	MAT	Creeping	(B)	Yielding
	(C)	Breaking	(D)	None of these
53.	When is cal		orces applied to a body,	tend to elongate it, the stress so produced,
			(D)	Commencius atunas
	(A)	Shear stress	(B)	Compressive stress
	110)	Tensile stress	(D)	Transverse stress
54.			carries two equal cor um bending moment M	ncentrated loads W at distances L/3 from is
	100	WL	(D)	WL
	LA	3	(B)	4
	(0)	5WL	(D)	<u>3WL</u>
	(0)	8	(D)	12
	15			
55.				where it changes sing, is called
	(A)	Point of inflexion	(B)	Point of contraflexure

(C)

Point of virtual hinge

All the above

56.	Shear		ng a	uniformly distributed load over its whole
	SAS	Triangle	(B)	Rectangle
	(C)	Parabola	(D)	Cubic parabola
57.		haft is simultaneously subjected to a to mum bending stress and maximum she		T and a bending moment M, the ratio of stress is
	(A)	$\frac{M}{T}$	(B)	$\frac{T}{M}$
	(A)	$\frac{2M}{T}$	(D)	$\frac{T}{M}$ $\frac{2T}{M}$
58.	Strai	n energy of any member may be defined	as w	ork done on it
	(A)	to deform it	(B)	to resist elongation
e-	(C)	to resist shortening	(B)	all the above
59.	Pick	up the correct statement from the follow	ving:	
	(A)	A ductile material has large plastic zon	ne	
	(B)	A brittle material has no plastic zone		
	(C)	A rigid material has no plastic zone		
	(B)	All the above		
60.	The v	value of Poisson's ratio always remains		
	(A)	greater than one	(B)	less than one
	(C)	equal to one	(D)	none of these
61.	Three	e moment equation is applicable only wh	hen	
,	(A)	The beam is prismatic	(B)	There is no settlement of support
	(C)	The spans are equal	D	None of the above
62.	The c	arry over factor for a prismatic beam el	emen	t whose far end is hinged is
	(A) ·	0	(B)	2
	JOY	0.5	(D)	2.5
63.	The r	nodified stiffness of a member which cro	osses	the axis of symmetry is
	(A)	6 EI/L	(B)	4 EI/L
	(C)	3 EI/L	(D)	2 EI/L
64.	For t	he usual loadings on the beam ———		moments occurs at the mid-section of the
	·us	Sagging	(B)	Hogging
	(C)	Zero	(D)	None of the above
	(0)			10110 01 010

65.	The i	nfluence line for any stre	ss function are used	for obtaining the maximum value du
	(A)	Single point load only	(B)	Uniformly live load only
	(C)	Several point loads	(B)	All the above
66.	The v	variation of influence line	for the stress functi	on in a statically determinate structure is
	(A)	Circular	(B)	Parabolic
	ser	Linear	(D)	None of the above
67.	À me	mber under tension is cal	lled	
	(A)	Strut	(B)	Tie
	(C)	Strut-tie	(D)	Rafter
68.	The r	number of unknowns to b	e determined in the	stiffness method is equal to
	(A)	Static indeterminacy		
	(B)	Kinematic indetermina	cy	
	(C)	Static indeterminacy ar	nd kinematic indeter	rminacy
	(D)	None of the above		
69.	The f	orces acting on the bar as	s shown in figure int	croduce
			τ >	
			Market The Park	
	(A)	Compressive stress	τ (B)	Tensile stress
	ver	Shear stress	(D)	None of these
70.	The	ratio of maximum shear s	tress to average she	ar stress of a circular beam is
	(A)	2/3	(B)	3/2
	(C)	3/4	Dr	4/3
71.			e for brittle materia	
	(A)	Maximum strain energy		Maximum shear stress theory
	John	Maximum principal str	ess theory (D)	Distortion energy theory
72.		ch one of the following pai		atched?
	(A)	Lame's constant :	Thick Cylinder	
	(B)	Macaulay's method :	Deflection of bea	
	(C)	Euler's method :	Theory of colum	
	(D)	Eddy's theorem :	Torsion of shaft	S

	(C)	2T	(D)	4T			
74.		id shaft is subjected to a to					If 'N' is
		nodulus of rigidity, the stra	in energy per unit	volume	of the shaft is	equal to	
	SAS	$\frac{ au_{ ext{max}}^2}{4N}$	(B)	$\frac{\tau_{\text{max}}^2}{2N}$ $\frac{4\tau_{\text{max}}^2}{N}$			
	(C)	$rac{ au_{ ext{max}}^2}{4N} = rac{2 au_{ ext{max}}^2}{N}$	(D)	$\frac{4 au_{ ext{max}}^2}{N}$			
75.		nply supported beam of cont is the moment required ort?			5.00		
	(A)	M/3	(B)	M/2			
	ver	M	(D)	2M			
76.	beam 1. 2. 3. 4.	Reduces the negative mome Increases the negative mome Increases the positive mome Increases the positive mome Increases the positive mome ese statements: 1 and 4 are correct 2 and 3 are correct	ent at support ment at support ent at the center o	f span of span 1 and 3	are correct are correct	ort of a cont	tinuous
77.	Whic	h of the following statemen	t is correct?				
	(A)	$F_m = A_{ms}^T F_s A_{ms}$	(B)	$F_m = A_m$	$_{ns} F_s A_{ms}^{T}$		
		$F_s = A_{ms}^T F_m A_{ms}$	(D)	$F_s = A_m$	$_{s}$ F_{m} A_{ms}^{T}		
78.		aply supported beam AB is e slopes at A and B respect	12		oment M at its	ends. Let i_a	and i_b
	(A)	1/2	(B)	1			Me To A
	(C)	1/3	(D)	1/4			
					I TO VE		

Bending moment 'M' and torque 'T' are applied on a solid circular shaft. If maximum bending stress equals to maximum shear stress developed, M is equal to

(B) T

(A)

79.

(A)

T/2

point. Then the rotation at the ends will be

 $\Delta/2L$

 $3\Delta/L$

A simply supported beam AB, having span L is subjected to a displacement Δ at its mid

(B)

(D)

 $2\Delta/3L$

 $5\Delta/L$

80.	The s	stillness of a structure	indicate its capacity to	
	(A)	Carry load without fa	ailure	
	(B)	Resist load without s	ignificant deformation	
	(C)	Carry load without to	ension	
	(D)	None of the above		
81.		iquid limit of a soil ma	ss is 20% and its plasti	c limit is 25%. Then the plasticity index of
	(A)	5	(B)	-5
	Var'	0	(D)	None of these
82.	For e	engineering purposes, s	oil is defined as	
	(A)	the loose mantle at the	he surface of the earth	which favours the growth of plant
	BY	a natural aggregate organic in nature	of mineral grains, loc	se or moderately cohesive, inorganic o
	(C)	a disintegrated rock		
	(D)	all of the above		
83.	Black	k cotton soil		
	(A)	is organic in nature		
	BY	contains large percen	ntage of clay minerals	
	(C)	exhibits low compres	sibility	
	(D)	all the above	4.5	
84.	Cons	olidation and compress	sibility of soil	
	(A)	is a measure of the a	bility of soil to allow the	e water to pass through its pores
	(B)	is a measure of the a	bility of soil to bear stre	esses without failure
	cer	deals with changes in	n volume of pores in a s	oil under load
	(D)	none of the above		
85.	The I	property of soil a which	is of great importance	in finding settlement of structures is
	(A)	Permeability	(B)	Consolidation
	(C)	Compressibility	on	Both (B) & (C)
86.	The	maximum size of the pa	articles of clay is about	
	(A)	0.0002 mm	B	0.002 mm
	(C)	0.02 mm	(D)	0.2 mm
ACI	FCVE		14	

94.	The	coefficient of compressibility ———	wi	th increase in pressure				
	JAT	decreases	(B)	increases				
	(C)	doest not change	(D)	none of the above				
95.	The s	shear strength of cohesionless soil						
	(A)	is proportional to the cohesion of t	he soil					
	(B)	is proportional to the tangent of th	ne angle o	of internal friction				
	(C)	increases with the decrease in nor	mal stres	ss of soil				
	(D)	all of the above						
96.	A line		tion of wa	ter content for soil containing no air voids				
	(A)	100% saturation line	(B)	Zero air void line				
	ver	Either (A) or (B)	(D)	Liquid limit line				
97.	The b	pearing capacity factors $N_c^{}$, $N_q^{}$ and	l N, are	functions of				
	(A)	Cohesion of the soil	(B)	Internal friction angle				
	(C)	Both (A) & (B)	(D)	None of the above				
98.	When the water table is close to the ground surface, the bearing capacity of a soil is reduced to							
	SAT	One-Half	· (B)	One-Fourth .				
	(C)	One-Third	(D)	Two-Third				
99.	Whic	h of the following statement is corre	ect?					
	(A) The settlement of a flexible footing on cohesionless soil is less in the center than at the edges							
	(B)	B) The settlement of a rigid footing on cohesionless soil is uniform throughout						
	(C)	The settlement of a rigid footing or	n cohesiv	e soil is uniform throughout				
	(B)	All of the above						
100.		der-reamed piles, the diameter of t	he under	reamed portions are normally				
	(A)	1 to 1.5	(B)	1.5 to 2				
	(e)	2 to 2.5	(D)	3 to 3.5				

81.	SHU IS	s a
	(A)	fine grained soil with little or no plasticity
	(B)	clay with a high percentage of the clay mineral
	(C)	soil composed of unaltered mineral grains
	(D)	material deposited by a glacier
88.	Bulk	density of a soil is defined as the ratio of
	(A)	Weight of solids to the weight of water
	(B)	Unit weight of solids to the unit weight of water
	SON	Total weight of soil mass to the total volume of soil mass
	(D)	Volume of solids to the weight of solids
89.	The	plastic limit exists in
	(A)	Sandy soils (B) Gravel soils
	(C)	Silty soils Clays
90.	Whic	ch of the following is practically more permeable?
	(A)	Sand and silt mixture (B) Clay
	(C)	Silt Coarse sand
91.	The	quantity of seepage of water in a soil medium is
	(A)	inversely proportional to the coefficient of permeability
	(B)	directly proportional to the length of flow of water from upstream
	set	directly proportional to the coefficient of permeability
	(D)	inversely proportional to the head of water at upstream
92.	The	consolidation of soil is defined as the
	(A)	process of compression by gradual reduction of pore space under steady load
	(B)	process which gives gradual decrease of water content at constant load
	ser	change in volume of soil due to expulsion of pore water under an applied load
	(D)	all of the above
93.	The	ultimate settlement of a soil
	(A)	is directly proportional to the compression index
	(B)	is directly proportional to the depth of the compressible soil
	Jer'	
	(D)	increases with an increase in the initial void ratio

10	Wate	r may not contain much impuri	ties if its sour	ce is
	(A)	reservoirs	(B)	stream flowing in plains
	(C)	lakes in lower regions	CON'	spring along hill slopes
102.	The I	Bacteria which can survive with	or without fr	ee oxygen is
	(A)	Aerobic Bacteria	(B)	Anaerobic Bacteria
	ver'	Faculative Bacteria	(D)	Coliform Bacteria
103.	Whic	h of the following water borne d	lisease is not	caused by bacterial infection
	(A)	Typhoid	(B)	Cholera
	ser	Gastroenteritis	(D)	Bacillary dysentery
104.	Whic	h of the following pairs is not co	orrectly match	ned?
,		Type of filter	Rate	of Filtration
	(A)	Rapid sand filter	5.0 n	$n^3/m^2/hr$
	(B)	Slow sand filter	0.1	to $0.4m^3/m^2/hr$
	ser*	Double media filter	7.5 t	$0.10m^3/m^2/hr$
	(D)	Pressure filter	15 to	$20m^3/m^2/hr$
105.	Coal	based thermal power station po	llute the atm	osphere by adding
	(A)	NOx and SO2	(B)	NOx, SO2 and spm
	Jan	NO _x , SO ₂ , spm and CO	(D)	NO _x , spm and CO
106.	Whic	h of the following treatments re	duce salainity	y of water?
	1.	Flocculation and sedimentation	on	
	2.	Filtration		
	3.	Reverse osmosis		
	4.	Electrodyalsis		
	Selec	t the correct answers using the	codes given b	elow:
	(A)	1 and 2	(B)	3 and 4
	(C)	2 and 3	(D)	1 and 4
107.	The	learing of slow sand filter is do	ne by	
	(A)	reversing the direction of flow	of water	
	(B)	passing air through the filter		
	(C)	passing a solution of alum and	time through	n the filter
	(B)	scrapping off the top layers of	sand and adn	nitting water

108.	Which of the following would contain water with maximum amount of turbidity?						
	(A)	lakes	(B)	oceans			
	John	rivers	(D)	wells			
109.	The s	ewage system originate	es from				
	(A)	house sewers	(B)	lateral sewers			
	(C)	branch sewers	(D)	outfall sewers			
110.	The s	ewer which transports	the sewage to the poir	nt of treatment, is called			
	(A)	house sewer	B	outfall sewer			
	(C)	branch sewer	(D)	main sewer			
111.	The p	H value of sewage is de	etermined with the he	lp of			
	(A)	Imhoff cone	(B)	Turbidimeter			
	(C)	Potentiometer	.or	None of these			
112.	Imho	ff cone is used to determ	nine				
	JA	settlable solids	(B)	suspended solids			
	. (C)	dissolved solids	(D)	none of these			
113.	The s	tandard BOD of water	is taken for				
	(A)	1 day	(B)	2 days			
	ver	5 days	(D)	10 days			
114.	The d	ligested sludge from sep	ptic tanks is removed	after a maximum period of			
	(A)	3 years	(B)	3.5 years			
	(C)	4 years	(D)	6 years			
115.	The r	normal settling time all	owed in a primary set	tling tank is			
	LAS	3 hours	(B)	1 hour			
	(C)	6 hours	(D)	9 hours			
116.	The c	oagulant which is gene	rally not used for trea	ting the sewage, is			
	CAST	alum	(B)	ferric chloride			
	(C)	ferric sulphate	(D)	chlorinated coppers			
ACF	CVE		18				

117. The ratio of 5 day BOD to ultimate BOD is about

(A) $\frac{1}{3}$

 $\frac{2}{3}$

(C) $\frac{3}{4}$

(D) 1.0

118. Filtration of water is done to remove largely

(A) colour

(B) odour

(C) turbidity

(D) pathogenic bacteria

119. The chloride content of treated water for public supplies should not exceed

(A) 100 ppm

(B) 150 ppm

(250 ppm

(D) 300 ppm

120. The minimum self cleaning velocity of sewage flowing through pipe line, is

(A) 2 m/sec

(B) 1 m/sec

(C) 0.5 m/sec

(D) 0.25 m/sec

121. If 'd' and 'n' are the effective depth and depth of neutral axis respectively of a singly-reinforced beam, the lever arm of the beam is

(A) d

(B) n

(C) $d + \frac{n}{3}$

 $d-\frac{n}{3}$

122. Pick up the incorrect statement from the following:

The intensity of horizontal shear stress at the elemental part of the beam section, is directly proportional to

- (A) shear force
- (B) area of the part
- (C) distance of the C.G. of the area from its neutral axis

moment of the cross-section of the beam about its neutral axis

123. Spacing of stirrups in a rectangular beam, is

- (A) kept constant throughout the length
- (B) decreased towards the centre of the beam
- (C) increased at the ends

increased at the centre of the beam

124.	The stresses developed in concrete and steel in a reinforced concrete beam 25 cm wide and 70 cm deep to the centre of reinforcement are 62.5 kg/cm ² and 250 kg/cm ² respectively, if m = 15, the depth of its neutral axis is							
	(A)	20 cm	(B)	25 cm				
	ser	30 cm	(D)	35 cm				
125.	The v	width of the flange of a L-beam,	should be les	ss than				
	(A)	one-sixth of the effective span						
	(B)	breadth of the rib + four times	thickness of	the slab				
	(C)	breadth of the rib + half the cl	ear distance	between the ribs				
	(B)	least of the above						
126.	As pe	er I.S.456, the reinforcement in a	column sho	ould not be less than,				
	(A)	0.5% and not more than 5% of	cross-section	nal area of column				
	(B)	0.6% and not more than 6% of	cross-section	nal area of column				
	(C)	0.7% and not more than 7% of	cross-section	nal area of column				
	JB)	0.8% and not more than 8% of	cross-section	nal area of column				
127.		maximum ratio of span to dep	th of a slat	o, simply supported and spanning in two				
	(A)	25	(B)	30				
	ver	35	(D)	40				
128.		a continuous floor slab suppo mediate span length, is	rted on be	ams, the ratio of end span length and				
	(A)	0.6	(B)	0.7				
	(C)	0.8	SON'	0.9				
129.	A fla	t slab is supported						
	(A) - on heams							
	(B) on columns							
	(C) on beams and columns							
	(D)	on columns monolithically buil	t with slab					
130.		combined footing for two colu	mns carryi	ng unequal loads, the maximum hogging				
	(A)	more loaded column	(B)	equidistance from either column				
	(C)	point of the maximum shear for	orce D	point of zero shear force				

- 131. Sottom bars under the columns are extended into the interior of the footing slab, to a distance greater than
 - (A) 42 diameter from the centre of the column
 - (B) 42 diameter from the inner edge of the column
 - 42 diameter from the outer edge of the column
 - (D) 24 diameter from the centre of the column
- 132. In a prestressed beam carrying an external load 'W' with a tendon having an angle of inclination ' θ ' and prestressed load 'P', the net downward load at the centre will be
 - (A) $W 2P\cos\theta$

(B) $W - P\cos\theta$

(C) $W - P \sin \theta$

- $W 2P\sin\theta$
- 133. As per IS 1343, total shrinkage for a pretensioned beam is
 - (A) 3.0×10^{-2}

(B) 3.0×10^{-3}

(e) 3.0 × 10⁻⁴

- (D) 3.0×10⁻⁵
- 134. The channels are subjected to twisting, due to absence of symmetry with regard to the axis,
 - (A) parallel to flanges

- (B) parallel to web
- (C) perpendicular to flanges
- both (B) and (C)
- 135. If 'P' is the wind pressure in kg/cm², 'v' is the velocity in km/hour and 'K' is the constant of proportionally, then
 - (A) $P = \frac{k}{v^2}$

(B) $v = \frac{K}{p^2}$

 $P = Kv^2$

- (D) P = Kv
- 136. The rivets which are heated and then driven in the field, are known as,
 - (A) power driven shop rivets
- (B) power driven field rivets

(C) hand driven rivets

- (D) cold driven rivets
- 137. Efficiency of a riveted joint is defined as the ratio of
 - least strength of a riveted joint to the strength of solid plate
 - (B) greatest strength of a riveted joint to the strength of solid plate
 - (C) least strength of a riveted plate to the greatest strength of the riveted joint
 - (D) all the above

138.	Effect	Effective sectional area of a compression member is equal to						
	(A)	gross sectional area ÷ area of rivet holes						
	BI	gross sectional area - area of rivet holes						
	(C)	gross sectional area + area of r	ivet ho	les				
	(D)	gross sectional area × area of r	ivet ho	les				
139.		a large value of radius of gyration is i						
	(A)	channels are placed back to back						
	(C)	channel flanges are kept outward	(D)	none of the above				
140.	If 'M	is the moment due to a couple in a	bearin	ng plate whose width is 'b' and allowable				
		ng stress is 'P, the thickness 't' of the						
	(A)	$t = \sqrt{\frac{b \times P}{6M}}$	(PS)	t - 6M				
		√ √ 6M	J D)	$t = \sqrt{\frac{6M}{b \times P}}$ $t = \sqrt{\frac{6M}{bP}}$				
	(C)	$t = \frac{6M}{hP}$	(D)	t = 6M				
	(0)	bP	(1)	V bP				
141.		per passage is a cross drainage work pr		well above F.S.L. in canal				
	(A)	at same level as canal bed	No.	and the state of t				
	(C)	below FSL of canal	(D)	below bed level of canal				
142.	Perm	anent witting point is						
	(A)	a characteristic of a plant						
	(B)	a soil characteristic						
	(C)	a soil characteristic modified by crop						
	(D)	dependent on soil water plant fertiliz	er inte	eraction				
8,								
143.	Paleo	is the						
	(A)	first watering before a crop is sown	(B)	first watering after a crop is sown				
	(C)	last watering	(D)	none of the above				
144.	Base	period of a crop is						
	(A)	the same as crop period	(B)	less than crop period				
	(C)	more than crop period	(D)	none of the above				
145.	The f	flow mass curve is an integral cumec o	f					
	JAY	hydrograph	(B)	hyetograph				
	(C)	flow duration curve	(D)	S-curve				
ACE	CVE	2	2					

146.	The method used for estimating missing rainfall data is								
	W	normal ratio method	(B)	station year method					
	(C)	plotting positive method	(D)	national method					
147.	Base	flow seperation is used in connection	with						
	(A)	seepage flow	(B)	infiltration					
	(C)	evaporation	(B)	stream flow					
148.	Flow duration curve is a plot of								
1	stream discharge against percentage of time the flow is equalled or exceeded								
	(B) stream discharge against time in chronological order								
	(C)	accumulated stream flow against ti	me						
	(D) base flow against percentage of time the flow is exceeded								
149.	Hydrograph is a relation between time in hours and:								
	(A)	rainfall (mm)	(B)	predation (cm)					
	ser	surface river off (cumecs)	(D)	evaporation (cm)					
150.	Double mass analysis is adopted to								
	(A)	estimate missing rainfall data							
	(B)	obtain intensities of rainfall at various durations							
	ser !	check consistency of data							
	(D)	cases where back-water effect is pro	esent						
151.	Hyetograph is a plot of								
17	(A)	cumulative rainfall Vs time	(B)	rainfall depth Vs duration					
	(C)	evaporation rate Vs time	Dr	rainfall intensity Vs time					
152.	A stream receiving contribution from ground water is called								
	(A)	influent stream	(B)	effluent stream					
	(C)	ephenseral stream	(D)	basal					
153.	The mass curve of rainfall of a storm is plot of								
	(A)								
	(B) rainfall depths for various equal durations plotted in increasing order								
	(C) rainfall intensity Vs time in chronological order								
	(D)	accumulated precipitation Vs time	in chron	nological order					
154.	Inal	level crossing type of cross drainage v	vorks						
	(A)	canal is above drain	(B)	canal is below drain					
1	1000	sonal and duain are at the some la-	ol : (D)	none of the above					

155.	The c	haracteristic feature of a barrage is							
	(A)	provision of raised crest							
	(B)	creation of storage reservoir on U/S							
	(0)	provision of a series of gates across the river for flow regulation							
	(D)	a crest that is built in delta areas or	nly						
156.	Fish	ladder is provided on the side of							
	SAS	divide wall	(B)	diaphragm wall					
2.7	(C)	core wall	(D)	wing wall					
157.	The n	nain function of diversion head works	s provide	ed at the off take of a canal from a river is					
	(A)	to raise water level in river	(B)	to control floods					
	son	store water	(D)	control silt entry into canal					
158.	A bar	rage differs from a weir on account o	f						
	(A)	low set crest	(B)	effective control over river flow					
	(C)	series of gates to effect pondage	(B)	all of the above					
159.	Maxi	mum water application efficiency is i	n						
	(A)	surface irrigation	(B)	lift irrigation					
	ver	sprinkler irrigation	(D)	furrow irrigation					
160.	The l	nighest water saving method of irriga	tion is						
	(A)	sprinkler	(B)	drip					
	(C)	sub-surface	(D)	basin					
161.	The p	provision given on the periphery of tw	on in th	e limitation of its sizes in					
	(A)	housing	(B)	green belt					
	(C)	zoning	(D)	road system					
162.	The a	area characterized by substandard ho	ousing co	onditions within a city					
	(A)	twon .	(B)	division					
	cer	slums	(D)	subdivisions					
163.	Whe		ne sort	of development is bound to take place is					
	(A)	ribbon development	(B)	concentric spread					
	ser	satellite growth	(D)	scattered growth					
164.	Most	of the towns in the past have grown	in a way	y of					
	(A)	planned growth	(B)	natural growth					
	(C)	satellite growth	(D)	scattered growth					
		Savorito Brown	(2)						
ACF	CVE		24						

165.	The road which connects the town to a state highway or a national highway is termed as						
	(A)	local roads	(B)	streets			
	(C)	pathways	(D)	arterial roads			
166.		aintain easy flow of traffic or through sers of such roads, in	roads	and to give a convenience and comfort to			
	(A)	Arterial roads	(B)	Through roads			
	JOY	By-pass roads	(D)	Loo-roads			
167.	A wa	y is to divert from the town all the thro	ough tr	raffic which has no business in the town is			
	(A)	express way	(B)	outer ring road			
	(C)	inner ring road	(D)	free ways			
168.		provision to indicate an arterial road lily and safely	on wh	ich fast urban traffic is allowed to move			
	JAST	express way	(B)	outer ring road			
	(C)	inner ring road	(D)	free ways			
169.	Slope	provided across the road is called					
	JAT	camber	(B)	gradient			
	(C)	super elevation	(D)	none of the above			
170.	The I	ndian road congress was established in	ı				
	SAT	1934	(B)	1952			
	(C)	1947	(D)	1961			
171.	The r	ate of rise or fall of a road along its ali	gnmen	t is known as			
	SAT	gradient	(B)	camber			
	(C)	side slope	(D)	super elevation			
172.	Widtl	n of traffic lane of a single lane is					
	(A)	3.75 m	(B)	5.50 m			
	(C)	7.00 m	(D)	7,50 m			
173.	All th	ne sections of the road should be design	ed for				
	(A)	overtaking sight distance	(B)	intermediate sight distance			
	(C)	(A) and (B)	(B)	stopping sight distance			

174.	The layer that is directly in contact with the traffic is							
	JAS	wearing course	(B)	base course				
	(C)	sub base	(D)	sub grade				
175.	Trave	el speed						
	(A)	Instantaneous speed of a vehicle	at a cross s	section				
	(B)	Distance covered Time of travel excluding halting	tima					
	(0)							
	(C)	average speed of a vehicle crossin	ng at a part	cicular cross section				
	on	Distance covered Time of travel including halting	time					
176.		convexity provided to the carria	age way be	etween the crown and the edge of the				
	(A)	super elevation	(B)	camber				
	(C)	height of the pavement	(D)	none of these				
177.	The s		ads which,	in ordinary conditions, does not exceed is				
	(A)	rolling gradient	(B)	maximum gradient				
	(C)	exceptional gradient	(D)	all the above				
178.	Reco	nnaissance is best done with the h	elp of					
	SAT	aerial photographic survey	(B)	cadastral surveys				
	(C)	topographical survey	(D)	triangulation surveys				
179.	An ex	xample of a rigid pavement is						
	(A)	earthen road	(B)	water bound macadam road				
	(C)	bitumen road	or	concrete road				
180.	'Gau	ge' on Indian Railways is the						
	SUS	minimum distance between the	running fac	es of the two inner rails				
	(B)	distance between the running fac						
	(C) (D)	(C) distance between the running faces measured 15.88 mm below the rail table (D) distance between the running faces measured 16 mm below the rail table						

- 181. The reduction in project time normally results in
 - (A) decreasing the direct cost and increasing indirect cost
 - (B) increasing the direct cost and decreasing the indirect cost
 - (C) increasing the direct and indirect cost both
 - (D) decreasing the direct cost and indirect cost both
- 182. Consider the following statements:

In the bar chart planning

- 1. Interdependence of the operations cannot be portrayed
- 2. Progress of work can be measured
- 3. Spare time of the activities can be determined
- 4. Schedule cannot be updated
- (A) 1, 2 and 3 are correct

(B) 1 and 4 are correct

(C) 2, 3 and 4 are correct

(D) 1, 2 and 4 are correct

183. Consider the following statements:

In the critical path method of construction planning, free float can be

- 1. Greater than total float
- 2. Greater than independent float
- 3. Equal to total float
- 4. Less than independent float

Of these statements:

(A) 1 and 4 are correct

(B) 2 and 3 are correct

(C) 3 and 4 are correct

(D) 1 and 2 are correct

- 184. In time-cost optimization of a project, crashing is done
 - (A) on all the activities
 - (B) on all the activities lying on the critical path
 - (C) only on activities lying on the original critical path and having flatter cost slopes
 - on original critical activities and those that become critical at any stage of crashing in the order of ascending cost slope
- 185. During the construction period, price variation clause in contracts caters to
 - (A) increase in rates of only important materials
 - (B) variation in cost in materials element, labour element and petrol-oil-lubricant element
 - (C) variation in total cost of the project on an adhoc basis
 - (D) rate of inflation

186.	Secur	ity deposit detected	at 5% from contrac	ctors	DILIS IS			
	(A)		e contractor has con					
.,	(B)	refunded even before the completion of the work provided good progress has been established						
	(C)				f say 100 years and spent for maintenance			
	(B)	refunded when the later is over	e defect liability pe	riod o	f six months or one monsoon whichever is			
187.		ng fund is						
	(A)			hen it	s economic life is over			
	(B) (C)	Raised to meet ma		inal a	uthorities by the tenants			
	(D)			1	riding additional structures and structural			
		modifications						
188.	There	e are three parallel	paths in a part of a	netw	ork between a bursting node and the next			
	merg	ing node with only	one activity in each	path	. The minimum number of dummy arrows			
	neede	ed will be						
	(A)	zero		(B)	one			
	Jer"	two		(D)	three			
189.	Cons	ider the following of	perations:					
	1.	Drilling						
	2.	Blasting						
	3.	Mucking						
	4.	Placing steel						
	5.	Placing concrete						
	The correct sequence of these operations in tunnel construction is							
	(A)	1, 2, 4, 3, 5			1, 3, 2, 4, 5			
	(e)	1, 2, 3, 4, 5		(D)	1, 3, 4, 2, 5			
190.	For a	given activity, the	optimistic time, pe	essimi	stic time and the most probable estimates			
	are 5	, 17 and 8 days resp	pectively. The expec					
	(A)	8 days		(B)	9 days			
	(C)	10 days		(D)	15 days			
191.	Weig	ht batching proceed	ds on					
	(A)		of the declared weigh	ht in e	ach bag of cement			
-	(B)	Weighing the cont		-1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
	(D)				naterial to be used in each batch each size range of each material and the			
	(D)	weight of water	or correct ary werg	01	cash size range of each material and the			

- 192. The original cost of an equipment is Rs.10,000. Its salvage value at the end of its total useful life of five years is Rs.1,000. Its book value at the end of two years of its useful life (as per straight line method of evaluation of depreciation) will be
 - (A) Rs.8,800

(B) Rs.7,600

(C) Rs.6,400

- (D) Rs.5,000
- 193. Mobilization advance up to 10% of the cost of work is given to a contractor
 - (A) on commencement of work at site for payment of loan taken by him
 - (B) for the purchase of construction material
 - (C) for the payment of advances to labour and other staff
 - (D) for all the activities required to start the work at site on finalization of contract document
- 194. Consider the following statements:

CPM network helps an engineer to

- 1. Concentrate his attention on critical activities
- 2. Divert the resources from non-critical advanced activities to critical activities
- Be cautious in avoiding any delay in the critical activities in order to avoid delay of the whole project

Of these statements:

(A) 1 and 2 are correct

(B) 2 and 3 are correct

(C) 1 and 3 are correct

- (D) 1, 2 and 3 are correct
- 195. Consider the following statements:

PERT

- 1. Takes care of uncertainties in the completion time
- 2. Requires single time estimate
- 3. Is useful for research and development oriented problem
- 4. Uses beta distribution probability curve

Of these statements:

- (A) 1 and 2 are correct
- (B) 1, 3 and 4 are correct
- (C) 3 and 4 are correct
- (D) 1, 2, 3 and 4 are correct

196.	Match List I with List II select the correct answer using the codes given below the lies.						
			List I			List II	
	(a)	Piece	work co	ntract	1.	Not practiced in Government	
	(b)	Lump sum contract Item rate contract		2.	Payment made by detailed measurement of differentitems		
	(c)			3.	Adopted for buildings, roads, bridges and electrical works		
	(d)	Labo	ur contra	act	4.	Petty works and regular maintenance work	
	Code	s:		,			
		(a)	(b)	(c)	(d)		
	(A)	1	2	3	4		
	(B)	2	3	4	1		
	(C)	1	4	3	2		
	OD)	4	3	2	1		
197.	In P	ERT a	nalysis,	event me	eans		
	LAS	star	t or finis	h of a ta	sk	(B) time taken for a task	
	(C)	end	of an ac	tivity		(D) work involved in the project	
198.	In a	bar ch	art the	vertical a	xis rep	presents	
	(A)	time	9		V	(B) types of activities	
	(C)	nun	ber of la	bours		various activities of the project	
199.	Selec	ct the	incorrec	t stateme	ent from	m the following:	
	(A) Event should be numbered in increasing order from left to right						
	(B) A pair of numbers should represent one and only one activity						
	ver						
	(D)	All	activity	allows si	noura b	e directed from left to right	
200.	A du	ımmy	activity	is that p	art of t	he project which	
	(A)	cons	sumes re	sources		(B) doesn't consume resources	
	(C)	cons	sumes ti	me only		(D) none of the above	

SPACE FOR ROUGH WORK

ACFCVE