

		11	0
Register Number			

2014 FORESTRY

Time Allowed: 3 Hours

[Maximum Marks: 300

ACEEO

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series without any omission and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you separately by the invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A • © D

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. In all matters and in cases of doubt, the English Version is final.
- 13. Do not tick-mark or mark the answers in the Question booklet.

SPACE FOR ROUGH WORK

30001191

1.	Thic	ch of these soil water is not found in the	e uppe	r layer of the soil?				
	(A)	Gravitational water	LOY	Capillary fringe				
	(C)	Capillary water	(D)	Hygroscopic water				
2.	Whic	ch of the concepts of agroforestry is fals	se?					
	(A)	Production of multiple outputs						
	(B)	uses multiple indigenous trees and s	hrubs					
	LOY	structurally and functionally easy to manage						
	(D)	Involves the interplay of socio-cultur	al valu	tes				
3.	An a		and mo	ore intense than in the district generally is				
	(A)	frost hole	(B)	frost pocket				
	(C)	frost locality	D	all of these				
1	Ago	of trees with annual rings can be deter	minad	hv				
4.		referring existing records		ocular estimate from general appearance				
	C			taking three periodic measurements				
5.	The recommended camber for a forest road if the surface is gravel or macedam							
	(A)	1 in 16 to 1 in 24	BI	1 in 36				
	(C)	1 in 48 to 1 in 60	(D)	1 in 72				
6.	The	micro organism associated with casuar	inas is	of fixation is				
	(A)	Rhizobium	(8)	Frankia				
	(C)	Mycorrhizae	(D)	Azotobacter				
7.	Class	sification of forest types by champion a	nd Set	h is based on				
	(A)	Climate	(B)	vegetation				
	(C)	Edaphic factors	DY	Eco-system				
8.	Pick	out the light demanding tree specis						
	(A)	Dalbergia latifolia	100	Tectona grandis				
	(C)	Syzygium cuminii	(D)	Abies pindraw				
	100		, ,					

9.	The c	The concept of progressive yield was attributable to						
	SIS	Hartig	(B)	Brandis				
	(C)	Smith	(D)	Von montel				
10.	Pick	the odd system out						
	(A)	Uniform system	(B)	Group system				
	S	Selection system	(D)	. Strip system				
11.		is a forest type	classified base	d on the growing stock				
11.	(A)	High forest	(B)	Pure forest				
	Ser	Normal forest	(D)	Production forest				
12.	The s	shade demander of a tropical v	vet evergreen f	orest				
	(A)	Dipterocarpus indicus						
	(B)	Calophyllum inophyllum						
	(C)	Artocarpus Hirsutus						
	SON	Mesua ferrea						
13.	The	mean annual temperature of r	nontane subtro	pical zone is				
	(A)	10°C to 17°C						
	BI	17°C to 24°C						
	(C)	>24°C						
	(D)	<10°C						
14.	~ (45		ensitive species					
	(A)	Dalbergia latifolia						
	(B)	Pongamia pinnata						
	(C)	Gmelina arborea						
		Pterocarpus marsupium						
15.	The	instrument used in vertical po	oint sampling					
	(A)	Wedge prism	S	Conimeter				
	(C)	Relaskop	(D)	Hypsometer				

16.	esu	arina Equisetifolia is a		
	(A)	Strong coppicer	(B)	Good coppicer
	(C)	Fair coppicer	Or Con	Poor coppicer
17.	The	type of pit used for dry zo	one planting is	
	(A)	Ordinary pit	(B)	Ring pit
	195	Saucer pit	(D)	Circular pit
18.	In te	ak plantations,	thinning	is practiced
	(A)	Free	0	Mechanical
	(C)	Ordinary	(D)	Crown
19.	Cons	sider the following statem	nents	
	(a)	Thinning distributes g	rowth potential of a	site amongst the trees retained
	(b)	Thinning increases net	t yield and in turn th	e revenue
	(c)	Thinning helps in obta	ining earlier returns	
	(d)	Thinning helps in getti	ing the timber of des	ired quality of the given statements,
	(A)	(a) alone is correct		
	(B)	(a) and (b) are correct		
	(C)	(a), (b) and (c) are corre	ect	
	100	All are correct		
20.	The l	height of stump in simple	e coppice system is u	sually kept at
	(A)	5-10 cm		15-25 cm
	(C)	25-50 cm	(D)	25-35 cm
21.	Whic	ch among the following is	s correctly matched?	
	(A)	Relascope - Ligh	ht intensity	
	(B)	Altimeter - Dia	meter	
	401	Clinometer - Hei	ght	
	(D)	Hypsometer - Girt	th .	

22.	JFM	concept was first implemented at		
	(A)	Jhansi	181	Arabari
	(C)	Aryalur	(D)	Jabalpur
23.	The l	height corresponding to the mean dia	ameter of	f 250 biggest diameter per hectare
	(A)	Crop height	00)	Top height
	(C)	Average height	(D)	Mean height
24.	Whic	h among these instrument is used to	determi	ine the age of a tree
	(A)	Relascope	(B)	Altimeter
	S	Presslers borer	(D)	Abney's level
25.	To de	etermine yield of a species for a part	icular reg	gion
	(A)	Money yield table	(B)	Volume yield table
	(C)	General yield table	100	Local yield table
26.	Pick	out the odd rotation out		
	(A)	Physical rotation		
	0	Rotation of maximum products		
	(C)	Rotation of maximum volume prod	luction	
	(D)	Rotation of highest income		
27.	Dian	neter quotient for each form class is	determin	ed by
	(A)	Karl's formula	(B)	Simpson's formula
	100	Hojer's formula	(D)	Melard's formula
28.	The	average annual increment for any sh	ort perio	d is termed as
	SUS	Periodic annual increment	(B)	Mean annual increment
	(C)	Average annual increment	(D)	Current annual increment

29.	table		becles II.	each thinning regime to prepare a yier
	(A)	300	(B)	400
	(C)	500	S	600
30.	A no	rmal forest should have		
	(A)	A normal series of age-gradation	(B)	A normal increment
	(C)	A normal growing stock	DI	All of the above
31.	Fore	st mensuration aims at		
	(A)	Exact estimation	(B)	Appropriate estimation
	Ser	Relative accuracy	(D)	Absolute accuracy
32.	Tree	height is related to		
	JAY	Site quality	(B)	Volume
	(C)	Number of trees	(D)	Age of the tree
33.	Com	monly available sizes of wooden scale	for tree	diameter measurements
	(A)	20 cm and 40 cm	DY	30 cm and 60 cm
	(C)	30 cm and 70 cm	(D)	40 cm and 80 cm
34.	The	instrument works based on the princi	inle simi	ilar triangle to measure height of trees
04.	-	Hypsometer		Abney's level
1	(C)	Clinometer	(D)	Altimeter
	(0)	Omone et	(D)	
35.	Whic	ch of these trees is not a protein rich	tree?	
00.	(A)	Leucaera leucocephala	100.	Acacia Halosericea
	(C)	Gliricidia Sepium	(D)	Sesbania Grandiflora
	(0)	<u> </u>	(D)	Standinora
36.	The	product of form factor and total tree h	neight is	known as
	(A)	Form quotient	(25)	Form height
	(C)	Form point ratio	(D)	Form ratio
)		

31.	under		7	otation	uantity	of the material of desired size and quant
	(A)	Physical rotat	ion		48	Technical rotation
	(C)	Silvicultural r	otation		(D)	Financial rotation
38.	The u	unit of forest wo	rking p	olan is		
	115	Forest division	n		(B)	Forest circle
	(C)	Forest section			(D)	Forest range
39.	The r	nodified functio	nal cla	ssification of fe	orest wa	s mentioned in
	(A)	Forest Policy	1894			
	(B)	National Fore	st Polic	cy 1952		
	(C)	National Fore	st Polic	cy 1980		
	900	National Com	missio	n on Agricultu	re (1976)	
40.	The i	ncrement at rot	ation a	age is		
	(A)	Current annu	al incre	ement	(B)	Mean annual increment
	JOY.	Final mean ar	nnual i	ncrement	(D)	Periodic mean annual increment
41.	The t	type of cells pre	sent in	soft wood		
	w	Tracheids			(B)	Vessels
	(C)	Fibre			(D)	Epithelial cells (gum canals)
42.	Pick	out the tree spe	cies w	hich yields soft	t fibre?	
	(A)	Hardwickia b			(8)	Sterculia cillosa
	(C)	Acacia mearn			(D)	Khaya senegalensis
43.	Whic	ch among the fo	llowing	is correctly m	atched?	
	(A)	Bark tannin	_	Hardwickia		
	0	Fruit tannin		Terminalia c		
	(C)	Hard resin	_	Acacia Seneg		
	(D)	Oleoresin	_	Carvota urei		

44.	hic	h tree species has wavy grain wood?		
	(A)	Tectona grandis	(B)	Dalbergia latifolia
	(C)	Shovea robusta	VER	Pterocarpus santalinus
45.	The	most important physical property of w	vood is	
	(A)	Modulus of rupture	1	Specific gravity
	(C)	Porosity	(D)	Modulus of elasticity
				Contract Contract
46.	Tick	the odd out		
	(A)	Power saw	W.	Tip saw
	(C)	Priming saw .	(D)	Bow saw
47.	Whic	ch one of these is not a logging operation	ion?	
	(A)	Rafting	(B)	Wetslide
	(C)	Floating	0	Rolling
	ų i .			
48.	Oute	r tree bark is otherwise known as		
	W	Peridem	(B)	Phellodem
	(C)	Phellogen	(D)	Phellum
49.	The	annual rings varies between hardwoo	ds and	softwoods with ·
	(A)	Species	(B)	Tree age
	(C)	Growing conditions	W.	All of these
50.	Ver	tical and horizontal resin ducts are no	ot seen i	n ·
	(A)	Pines	(B)	Spruce
	(C)	Douglas - fir	DY	Populars

51.	Agar	oil is extracted from the wood	of	
	(A)	Cedrus deodara	(B)	Pinus palustris
	101	Aquillaria agallocha	(D)	Juniperus virginana
52.		is an example fo	or leaf fibre	
	(A)	Sterculia urens		Caryota urens
	(C)	Helicteres isora	(D)	Grewia tilaefolia
53.	The	species highly suitable for Veen	a making	
	(A)	Tectona grandis	Or.	Artocarpus heterophyllus
	(C)	Acer saccharum	(D)	Toona ciliata
54.	The	most suitable species for tight o	noperage is	
	(A)	Teak	(B)	Rosewood
	SOF	Oaks .	(D)	Hemlock
55.		ies recommended for bentwood	articles are	
	1.	Morus alba		
	2.	Fraxinus spp.		
	3.	Celtis australis		
	4.	Morus laevigata		
	Arra	nge the above in the order of m		
	The same	1, 2, 3, 4		2, 3, 1, 4
	(C)	3, 2, 4, 1	(D)	4, 2, 1, 3
56.	The	timber of the following species	is suitable for	aircraft construction
	w	Picea smithiana	(B)	Cedrus deodara
	(C)	Pinus patula	(D)	Tsuga orientalis
57.	Bens	gal Kino is the product of		
	(A)	Lannea Coromandelica	(B)	Butea Monosperma
	ver	Pterocarpus marsupium	(D)	Azadirachta indica

10

58.	xe	d heart in a timber is due to		
	(A)	Natural defect	(B)	Seasoning defect
	19	Conversion defect	(D)	Borer defect
59.	Tens	ion wood is formed on the	9	of leaning stem
	100	Upper side	(B)	Lower side
	(C)	Middle part	(D)	Bottom of the tree
				AND THE RESERVE
60.	The	most durable wood among the following	g is	
	(A)	Rosewood .	(B)	Sandal
	S	Teak	(D)	Padauk ·
61.	Stock	k maps are prepared in the scale of —		
	(A)	1/5,000	(B)	1/10,000
	19	1/15,000	(D)	1/50,000
62.	Map	compilation is done by		
	w	Arundel method	(B)	Polygonal grid method
	(C)	Four point anharmonic method	(D)	Polar grid method
63.	A pa	ved dip surface of the road having a sp	an of r	not more than 7 metres is called
	(A)	Simple wooden bridge	DY	Irish bridge
	(C)	Cantilever bridge	(D)	Strutted beam bridge
		Contract of the contract of th		
64.	Tick	the odd out		
	W	Telford roads	(B)	Bridle path
	(C)	Branch Jeepable road	(D)	Inspection path

65.	Pick	the odd out		
	(A)	Pile piers .	1	Truncate piers
	(C)	Masonary piers	(D)	Crib piers
66.	The l	length of gunters chain is		
	(A)	30 m	(B)	100 feet
	(C)	20 feet	-	66 feet
67.	The	method of plotting the who	le traverse from a	single station
	15	Radiation	(B)	Intersection
	(C)	Traversing	(D)	Resection
68.	Choo	se the right answer		
	100	True meridian is usually	employed in geode	etic surveying
	(B)			hose elevation is to be determined
	(C)	Alidade is an instrument	t used in compass s	surveying
11. 14	(D)	Contour lines cross the r	idges at acute ang	les
69.	Pick	the wrong match		
	(A)	Passometer -	Distance measu	rement
	(B)	Theodolite -	Vertical + Horiz	ontal angles
	(C)		Whole circle bea	ring
	Son .	Planimeter -	Slope measurem	nent
70.	The	art or science of obtaining	reliable measurem	ents and maps from aerial photographs is
	4	Photogrammetry	(B)	Stereoscopy
	(C)	Photo Interpretation	(D)	Aerial photograph
71.	If the	e level of contour lines incr	eased from outer t	o inner portion, it indicates
	(A)	Valley		Hill
	(C)	Closed loop	(D)	Saddle
ACF	FO		. 12	

14.	e.e.	instrument used for computing the are	a irom	the plan of the plot is
	(A)	Pedometer	0	Planimeter
	(C)	Alidade	(D)	Ghat tracer
73.	A cor	ncrete structure constructed across the	strear	n bed of a seasonal stream is
	w	Cause way	(B)	Suspension bridge
	(C)	Wire rope bridge	(D)	Arch bridge
74.	In br		cher a	re laid alternatively in each course, it is
	(A)	English bond	Or	Flemish hond
	(C)	Header bond	(D)	Stretcher bond
75.	The t	cransverse raising of road in the center	above	the edges is called
	(A)	Crown	D	Camber
	(C)	Berm	(D)	Shoulder
76.	Build	ling load is transmitted to the earth th	rough	the
	(A)	walls	(B)	roof
	(C)	floor	000	foundation
77.		transverse slopes or inward tilt imp ifugal force is called	arted	to curves in the road to neutralize the
	(A)	Camber	(B)	Berm
	Ver .	Super elevation	(D)	Gradient
78.	Later	ral measurement in chain surveying is		
	(A)	Ranging	(B)	Levelling
	S	Offset	(D)	Declination

79.	In con	mpass surveying, the fore bearing a	nd back b	pearing of a line differs by				
	(A)	90°	0	180°				
	(C)	270°	(D)	360°				
80.	Verti	cal and horizontal angles can be me	asured by					
	(A)	Dumpy level	(B)	Compass				
	0	Theodolite	(D)	Clinometer				
81.	State	which statement is correct?						
	(A)	(A) The rate of nutrient cycling is high in coniferous forests						
	0	Nutrient cycling is slow in norther	n latitud	es compared to tropical regions				
	(C)	Nutrient cycling between regions a	are same					
	(D)	No difference in nutrient cycling b	etween si	ilvicultural systems				
82.	A un		drainage	areas and chanels contributing to a singl				
	w	Watershed	(B)	Dam				
	(C)	Seashore	(D)	Estuary				
83.	The	organic matter content of peat soil						
	(A)	10 – 20 %	(B)	20 – 30 %				
	(C)	30 – 40 %	0	50 - 90 %				
84.	Pick	the odd out						
	(A)	Carbonation	(B)	Oxidation				
	(C)	Hydration	VO)	Erosion				
85.	Soils	with EC >4 m mhos/cm, ESP > 15 a	and pH >	8.5				
	(A)	Saline soils	9	Saline alkaline soils				
	(C)	Alkaline soils	(D)	Nonsaline – alkaline soils				

86.	nic	nich of these mineral soils nave a high content of clay particles?							
	(A)	Entisols	(B)	Aridisols					
	5	Vertisols	(D)	Alfisols					
87.	Unde	er pH 5.5 which are the toxic ele	ments						
	4	Iron and aluminum	(B)	Zinc and Iron					
	(C)	Copper and manganese	(D)	Lead and zinc					
	• ₉ .								
88.	Geote	extiles are made up of							
	(A)	Polypropylene	(B)	Polyester					
	(C)	Coir pith	W/	All of the above					
89.	Whic	h among these elements play ar	important p	art in cell division?					
	(A)	Nitrogen	(B)	Sulphur					
	50	Phosphorus	(D)	Potassium					
90.	Ideal	soil structure helps in							
	(A)	Better movement of water	(B)	Resist compaction					
	(C)	Resist erosion		All the above					
91.	Whic	h soil is not suitable for bund co	nstruction?						
	W	Deep black cotton soil	(B)	Loamy soil					
	(C)	Light soil	(D)	Red soil					
92.	The r	number of hectares in a square l	kilometer is						
	(A)	10	0	100					
	(C)	500	(D)	1000					
93.	'Koka	am butter' is obtained from							
	(A)	Madhvea indica	(B)	Calophyllum inophyllum					
	100	Garcinia indica	(D)	Mesua ferrea					

94.	If the grain size of soil particle is 0.002 to 0.02, the soil texture is					
	(A)	coarse sand	(B)	clay		
	S	silt	(D)	fine sand		
95.	Inas	simplified version of a typical forest so	il profi	le, the horizon D refers t		
	(A)	Undecomposed leaves	(B)	Raw humus		
	S	Parent rock	(D)	Enriched layer		
96.	Smal	l gullies in forest areas are controlled	by			
	(A)	Alley cropping	0	Shrub checks		
	(C)	Strip cropping	(D)	Inter cropping		
97.	Benc	h terraces are used in slopes of				
	(A)	2-6%	(B)	6 – 10 % 16 – 33 %		
	(C)	10 – 16 %	0	16 – 33 %		
98.	The l	loss of plant nutrients by erosion is cal				
	(A)	drainage	,01	leaching		
	(C)	depercolation	(D)	saltation		
99.	Gully	y erosion is an advanced stage of				
	W	Rill	(B)	Sheet		
Y	(C)	Splash	(D)	Landslide		
100.	The	vertical movement of water inside the	soil is	called		
	(A)	Infiltration	(B)	Seepage		
	(C)	Drainage	000	Percolation		

101.	ndia's forest policies enunciated.						
	(Pick	the oddman out)					
	(A)	1988	- Or	1927			
	(C)	1894	(D)	1952			
102.	State	which among the statements is					
	1	If total output is maximum, N					
	(B)	The relationship between inpu	ut and output	can be described in cost function			
	(C)	Average variable cost is direct	tly related to	average product			
	(D)	Complementarities of two pro	ducts exists if	MRTS < zero			
103.	Selec	etion criteria for mutually exclu	sive projects				
	(A)	IRR	(8)	NPV .			
	(C)	BCR	(D)	Break even analysis			
104.	In th	e Economic analysis of forest p	rojects we sho	uld consider			
	100	Shadow price	(B)	Market price			
	(C)	Constant price	(D)	Decline price			
105.	Inferior goods is otherwise called as						
	W	Giffen's paradox	(B)	Angles law			
	(C)	Ricardian theory	. , (D)	Keynes interest theory			
106.	Ager	ncy or organization set up for m	arketing and	trade of NWFP's			
	(A)	Primary tribal co-operatives	A FILL				
	(B)	Large Area Multipurpose Soc	ieties				
	(C)	MFP Trade and Development	Federation				
	100	All the above					
107.	Dise	ease free plants can be produced	thigh				
	(A)	Callus culture		Meristem culture			
	(C)	Protoplast culture	(D)	Embryo culture			

108.	The l	nead office of ITTO is		
-	W	Japan	(B)	USA
	(C)	Canada	(D)	Australia
109.	Pick	the wrong statement		
	Char	acteristics of production function		
	(A)	It tells the relationship between inp	ut and	output
	(B)	It is well within the preview of econd	omics	
	195	It will not change with change in tec	chnolog	y
	(D)	It is for a given period of time or per	unit	
110.	The	discount rate at which NPV is zero is o	called	
	(A)	BC ratio	0	IRR
	(C)	GNP	(D)	GDP
111.	Elep	hant Preservation Act was enacted in		
	1	1887	(B)	1927
· Avi	(C)	1972	(D)	1992
112.	Fore	st policy 1894 was formulated based o	n the r	ecommendations given by
	(A)	Mc. Clelland	(B)	Diefrich Brandis
	VOY	Voelcker	(D)	None of the above
113.	Acco	rding to forest policy 1894, the govern	ment o	wined forests were classified based on
	(A)	The management	P	The primary functions
	(C)	The productivity	(D)	The geographical area
114.	Whic	ch of the following statements about F	orest P	olicy 1894 is not correct?
	(A)	Government owned forests were class	ssified	based on their primary functions
	(B)	Main object of forest management is	s to pro	mote the general well being of the country
	VO	The rich natural heritage - The wild	dlife in	habits the forests to be protected
	(D)	Maintenance of adequate level of for climatic conditions of the country	rest cov	ver for the preservation of the physical and

15.	Emp.	Emphasis on Forest Education was given for the first time in						
	(A)	Forest Policy 1894	(B)	Indian Forest Act 1927				
	500	National Forest Policy 1952	(D)	Forest Policy, 1988				
116.	Estal	blishment of Wildlife Sanctuaries an	d Nation	nal Parks were taken up during				
	(A)	First five year plan (1951-56)	0	Second five year plan (1956-6				
	(C)	Third five year plan (1966-69)	(D)	Fourth five year plan (1969-74				
17.	Fore	st (Conservation) Act 1980 is not app	olicable i	n				
	(A)	Union territories	01	Jammu and Kashmir				
	(C)	North eastern states	(D)	Southern states				
	4							
118.		tal is a						
	(A)	Natural resource		Cultural resource				
	. (C)	Human resource	(D)	Fixed resource				
110	TA: A							
119.		out the wrong statement in forest ed	conomics	perspective				
	(A)	Forests are not static in nature						
		(B) Forests play a dual role – Producer and produce						
	(C)	Forests have a long gestation period						
	9	Forests have only positive external	lities					
120.	Anth	er culture is attributable to						
	(A)	Bapat and Rao	D	Guha and Maheswari				
	(C)	Murashigs and Skoog	(D)	Mc Cown and Llyod				
	CVD	index refers to						
121.								
	(A)	Climate Volume Productivity index						
	(B)	Crop Volume Percent index						
	(C)	Cumulative Volume Percent index						
	1	Climate Vegetation and Productivi	ty index					

122.	Study of biotic community and its abiotic environment is called						
	(A)	Population ecology	0	Ecosystem ecology			
	(C)	Community ecology	(D)	Plant ecology			
	1.						
123.	A ch	ange in the base sequence of a triplet in	the g	ene is called			
	(A)	Deletion	(B)	Substitution			
	9	Mutation	(D)	Reverse transcription			
124.	The	quantitative traits exhibit continuous v	ariatio	on as they are controlled by			
	(A)	Oligogenes	(B)	Environment			
	9	Polygenes	(D)	None of the above			
125.	Tree	s that have proven to be genetically sup	erior	by means of progeny testing			
	(A)	Candidate tree	(B)	Plus tree			
	(C)	Check tree	500	Elite tree			
126.	Pick	the odd out					
	Ecolo	ogical Hotspots in India					
	(A)	Eastern Himalayas	500	Eastern ghats			
	(C)	North East Region of India	(D)	Western ghats			
127.	Prim	ary cause of less of tropical forest Biodi	iversit	y			
	(A)	Forest Plantation	20)	Slash and bum agriculture			
	(C)	Deforestation	(D)·	Reforestation			
128.	Cons	servation of Biodiversity can be best ach	nieved	by			
	us	In situe conservation	(B)	Ex situe conservation			
	(C)	In intro method	(D)	Protection			
129.	Whic	ch of the following is correctly matched?	,				
	(A)	Amogeissus latifolia - Celastraceae					
	(B)	Tectona grandis - Dipterocompaceae					
	5	Michelia Champaca – Magnoliaceae					
	(D)	Casuarina equisatifolia – meliaceae					

20

130.	Whie	en among these families will not yield	ressenti	al or volatile ons
	(A)	Compositae	0	Sterculiacoae
	(C)	Geraniaceae	(D)	Lauraceae
131.	Fund	ctional units of inheritance		
	(A)	Chromosome	W.	Genes
Ġ.	(C)	Alleles	(D)	None of the above
132.	In th	ne Raunkier's life forms, trees are cat	egorized	under
152.	(A)	Chamaephytes	(B)	Hemicryptophytes
	- (0)	Phanerophytes	(D)	Cryptophytes
		i idiotopii, oo	(15)	cr) hopin oo
133.		lationship between two species in wh		
	(A)	Mutualism	(B)	Commonsalism
	(C)	Symbiosis	W.	Antibiosis
	-			
134.	The	zone of vegetation separating two dif	ferent ty	pes of community is called
	(A)	Ecoboundary	(B)	Core zone
	(C)	Buffer zone .	0	Ecotone
135.	Larg	er units representing similar vegetat	tion are o	called
		Biomes		
	(C)	Population	(D)	Ecotypes
100	The	formity of Craminas and called as		
136.	The :	fruits of Graminae are called as	(D)	
	(0)	Caryopsis	(B)	Samara
	(C)	Nut	(D)	Capsules
137.	Stud	y of pollen is called as		
	w	Palynology	(B)	Dendrology
1, 1	(C)	paleobotany	(D)	Phenology

138.	Geo	graphic variability is	tested through		
	(A)	Progeny testing	(B)	Seed orchard	
	198	Provenance trail	(D)	Genetic testing	
139.	Win	d pollination is also k	nown as		
	(A)	Entomophily	4	Anemophily	
	(C)	Hydrophily	(D)	Zoophily	
140.		is the specim	en designated by the a	uthor or used by him as the nomenclatur	al
	type				CAI
	(A)	Lectotype		Holotype	
	(C)	Isotype	(D)	Halotype	
141.	Float	ting national park is s	situated in the state		
	(A)	Tamil Nadu	(B)	Kerala	
	W	Assam	(D)	Manipur	
142.	The	census method followe	ed for Asiatic Lion is		
	(A)	Transact	(B)	Call	
	(C)	Pugmark		Waterhole	
143.	The s	space which is defende	ed by the wild animals i		
	(A)	Home range	od by the white animals i	Territory	
	(C)	Core zone	(D)	None of these	
	1111				
144.	Proje	ct Tiger was impleme	nted during		
	45	1973	(B)	1980	
	(C)	1985	(D)	1970	
145.	Cansi	mulgus asiaticus is			
	(A)	House scirft	(P)	Indian winhair	
	(C)	Pied Kingfisher	(D)	Indian night jar Hoope	
ACF	FO		22		
			22		

146.	Oute	span of Elephants			
	(A)	85 years		(B)	35 years
	(C)	120 years		9	55 years
147.	Rlac	kbuck is the animal of			
147.	Diac			(D)	Dance areas
	(0)	Open plains		(B)	Dense areas
	(C)	Shrub areas		(D)	Hilly terrains
148.	Stud	y of animal behaviour.	in relation to ecol	loġy	
	(A)	Ecotone		0	Ethology
	(C)	Ergonomics		(D)	Entomalogy
149.	Tota	l young female per tota	al adult female is	called	l as
	(A)	Refined Natality		(B)	Gross Natality.
	(C)	General Natality		and the same	Net Natality
150.	Anim	nals lacking body cavity	v is called as		
	(A)	Pseudocelomata		(B)	Eueclomata
	100	Acocelomata		(D)	None of these
151.	Pick	the Correct match			
101.	(A)	King Cobra -	Gavialis ganget	icus	
	(B)	Jackal –	Lynx caracal	<u> </u>	
	10	Sambar -	Cerous unicolor		
	(D)	Tiger –	Panthera pardu		
152.	The l	Flankant actabing puga	advus adauts dia	L. Jin	
102.		Elephant catching proc Pit method	edure adopted in		
	(A)			(B)	Kheda system
	(C)	Mela-Shikar method			All of the above
153.	Indir	ect method of animal c	ensus include		
	(A)	Count of dens and bu	irrows	(B)	Foecal deposit count
	(C)	Pugmark census	1 A 1 A 1	0	All of the above

ACF	FO		24	
	(C)	Perius cantorta	(D)	Populus termuloides
	(A)	Agrostis hiemalis	2	Shorea robusta
161.	Whic	ch of these is not a indicator of fire?		
	(C)	Takin	VOT	Cousinga
	(A)	Serow	(B)	Goral
60.	Whic	ch of the following is not a goat antel	ope?	
	100	Sloth bear	(D)	Honey bear
	(A)	Black bear	(B)	Brown bear
59.	The	most widely distributed bear in India	n is	
	(C)	HFRI	(D)	TFRI
	(A)	IWST	0	NRCAF
	(Pick	the odd man out)		
58.	ICFR	RE institute		
,)	6	(D)	7
	(A)	4		5
57.		Wildlife Protection Act, 1972 compris	ses of — (B)	schedules
	(C)	1994	(D)	1995
	(1)	1992	(B)	1993
56.	The I	Project Elephant was launched durin	g the yea	ar
	(C)	Kanha	(D)	Bandipur
,		Eravikulam	(B)	Dachigam
55.		wildlife sanctuary significant for Nilg		
				WE FEW HILL
	10	1975	(D)	1980
	(A)	1971	(B)	1972
54.		sar convention came into force in		

162.	ores	t fire which is difficult to detect	and control					
	(A)	Ground fire	(B)	Creeping fire				
	(C)	Surface fire	· DY	Underground fire				
163.	Which	h of these factors affect the rate	e of energy re	lease in forest fuels.				
	(A)	Quantity of moisture in the fu	el					
	(B)	Modes of heat transfer	1					
	(C)	Wind movement, speed and d	irection					
	Or	All of the above						
164	What	t is haustoria plants?						
164.	(A)	Sucking roots of wants	(B)	Creeping roots of climbers				
	- (0)	Sucking roots of parasities	(D)	Climbing roots of plants				
		Duding 10000 02 parameter						
165.	Whic	ch of these is an obnoxious weed	affecting tre	e growth?				
	(A)	Tephrosia purpurea	(B)	Aerva lanata				
	(C)	Crotons sparsiflorus		Eupatorium sp				
166.	Whic	ch of these statements is incorre	ect					
	(A)	Rotational grazing is grazing limited number of cattle in a fixed sequence						
	0	Heavy and continuous grazing help in better establishment of fodder crops						
	(C)	Carrying capacity of the area has to be assessed before grazing						
	(D)	Periodic grazing and closure of grazing area is essential for the palatable grasses to						
		flourish						
		H _4						
167.	Cho	ose the correct match						
	(A)	Hyblaea puera	- Te	ak skeletonizer				
	(B)	Hapalia machaeralis	- Te	ak defoliator				
	10	Hoplocerymbox spinicomis	- Sa	l heartwood borer				
	(D)	Hypsipyla robusta	– De	odar defoliator				

168.	Ster	n cirlt in Casuarina is cau	sed by	ME Charles III				
	(A)	Ganoderma	95	Trichosporium				
	(C)	Pseudomonas	(D)	Certicium				
169.	The	vector for spike disease in	Sandal is					
	(A)	Psyllid	100	Jassid				
	(C)	Green plant hopper	(D)	White fly				
170.	Mari	ine wood borer						
	(A)	Bankia	(B)	Teredo				
	45	Cerambicids	(D)	Limnoria				
171.	The	distance of fire trace from	the advancing fire	depends on				
	(A)	Speed of fire trace	(B)	Length of advancing fire				
	101	Topography	(D)	Type of undergrowth				
172.	The s	speed of spread of fire and	its direction of spre	ead does not depend on				
	(A)	Wind	(B)	Inflammable material				
	(C)	Topography		Soil type				
173.	Slash	disposal in deodar forests	should be done aft	ter rains and before snow fall to control				
	(A)	Creeping fire	(B)	Crown fire				
	(C)	Surface fire	0	Ground fire				
174.	In land use classification, III class land having slopes over 100% should be alloted to							
	05	Forestry	(B)	Horticulture				
	(C)	Agriculture	(D)	pastures				
175.	The se	cale generally used for pre	paring fire mane is					
	(A)	1:5,000	(B)	1:10,000				
	(C)	1:25,000		1:50,000				

170.	The s	species resistant to environmental poil	utants	18				
	(A)	Pinus densiflora	Of	Ginko biloba				
	(C)	Cryptomeria japonica	(D)	Pinus roxlurghii				
177.	An ex	xample for browsing animal is						
•	(A)	Cow	(B)	Horse				
	JOY.	Camel	(D)	Bull				
178.	Bark	of mature sal trees is a favourable foo	d for					
	w	Elephant	(B)	Bison				
	(C)	Pigs	(D)	Bears				
179.	Drou	ght is more severe in forests growing						
	45	Calcareous soil	(B)	Sandy soil				
	(C) .	Stiff clay	(D)	Sandy loams				
180.	Frost produced by cold air brought from elsewhere is called							
	(A)	Radiation frost	(B)	Frost pocket				
	(C)	Pool frost	DY	Advective frost				
181.	Nair (1985) classified Agroforestry systems on the basis of							
	w	Structure	(B)	Floristics				
	(C)	Agroclimatic zones	(D)	Physiognomy				
¥ .								
182.	Whic	h among the species is not suited for A	lley C	ropping				
	(A) ·	Cassia siamea	(B)	Gliricidia sepium				
	S	Allizia labbeck	(D)	Leucaena leucocephala				

183.	Meth	od of raising forest plantations in com	binatio	on with agricultural crops					
	500	Agroforestry	(B)	Apiculture					
	(C)	Shifting cultivation	(D)	Silvipasture *					
184.	Whic	h among these trees is best suited for	Sibiag	riculture in semi-arid condition					
	(A)	Eucalyptus tereticornis							
	(B)	Casuanria equisetifolia							
	100	Ailanthus excelsa							
	(D)	Tectona grandis							
185.	The most important silvicultural operation for agroforestry								
	(A)	Thinning	9	Pruning					
	(C)	Weeding	(D)	Climber cutting					
186.	The best Agroforestry system for food and nutritional security in high rainfall areas								
	W	Homegarden	(B)	Silvipasture					
	(C)	Agrihorticulture	(D)	Silviagriculture					
187.	Whic	h of these practices can reduce pressu	re on e	existing forest and conserve biodiversity					
	(A)	Urban forestry	(B)	Farm forestry					
	VET	Agroforestry	(D)	Social forestry					
188.	Allele	Allelopathy in Agroforestry is more prominent under							
	(A)	Sole Cropping of trees							
	VOS	Simultaneous cropping of trees and crops							
	(C)	Sequential cropping of trees and cro	ps						
	(D)	Sole cropping of agricultural crops							

28

189.	Competition of trees in agroforestry can be best managed by								
	(A)	Pruning	(B)	Appropriate density					
	(C)	Sequential thinning	D	Choise of trees species					
190.	Which among these is not the objective of social forestry?								
	(A)	(A) To meet the timber and firewood requirement of the community							
	(B)	To meet the fodder requirement of the community							
	VET	To utilize the lands of the farmers for tree cropping							
	(D)	O) To create an asset for the village Panchayat							
191.	The term social forestry was coined by								
	(A)	NCA	DY	Jack Westoby					
	(C)	Brandis	(D)	K.M. Munshi					
192.	Hedgerow intercropping is								
	LAY	Agrisilviculture	(B)	Silvipasture					
	(C)	Hortisilviculture	(D)	Home gardens					
193.	Multitier cropping is a traditional practice in								
	(A)	Tamil Nadu	(B)	Karnataka					
	9	Kerala	(D)	Andhra Pradesh					
194.	The ratio of height to width in a shelter belts is								
	VI	1:10	(B)	1:15					
	(C)	1:20	(D)	1:25					
195.	Pick (the odd out	. ,						
	The component of social forestry are								
	145	Intensive forestry	(B)	Recreation forestry					
	(C)	Farm forestry	(D)	Extension forestry					

196.	An e	An example for Nitrogen Fixing Tree is								
	(A)	Teal	k				(B)	Neem		
	S	Sub	abol				(D)	Simaruba		
197.	is a non-leguminous nitrogen fixing tree									
	(A)	Casuarina equisetifolia					(B) Alnus nepalensis			
	6	(A) a	and (B)				(D)	Azadirachta indica		
198.	is normally referred as protein bank									
	(A)	Hortisilviculture					(B)	Home gardens		
	S	Silv	ipasture				(D)	Silviagriculture		
199.	Energy species suitable for tropical zones									
	(A)	Alnus nitida					(B)	Celtis australis		
	(C)	Pop	ulus cilia	<u>ta</u>				Acacia holosericea		
200.	Match List I correctly with List II and select your answer using the codes given below									
		List I					List II			
	(a)	Plantation crop				1.	Madhuca Indica			
	(b)	Medicinal plant				2.	Juglans regia			
	(c)	Food and oil producing tree			3.	Dioscorea prozeri				
	(d)	Dye producing plant			4.	Cardon	nom			
		(a).	(b)	(c)	(d)					
	45	4	3	1	2					
	(B)	2	1	3	4					
	(C)	3	. 2	1	4					
	(D)	1	4	3	2					

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

SEAL