SI.	No.	70001161	
J1.	140.	. onotiol	

		A	FGE
Register Number			

2014 GEOLOGY

Time Allowed: 3 Hours]

[Maximum Marks: 300

ACTOR

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open
 it at the commencement of the examination. As soon as the signal is received you should tear the right
 side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series without any omission and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you separately by the invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A • C D

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. In all matters and in cases of doubt, the English Version is final.
- 13. Do not tick-mark or mark the answers in the Question booklet.

SPACE FOR ROUGH WORK

13110007

ACFGE

1.	The a	ge of solar system is judged to be						
	(A)	3:0 to 3:5 billion years	(B)	2:0 to 3.0 billion years				
	(0)	4.5 to 5.0 billion years	(D)	5.0 to 5.5 billion years				
2.	The c	ontinental crust is						
	(A)	76 – 93 kilometers thick	(B)	32 - 56 kilometers thick				
	(C)	12 – 29 kilometers thick	(D)	108 - 120 kilometers thick				
3.	Alluv	ial fans normally occur						
	JAM	near the mountain front	(B)	near river banks				
	(C)	in river meanders	(D)	along the shoreline				
4.	Soil p	rofile is a vertical cross section through	n					
	(A)	zones	(B)	horizons				
	(C)	blocks	(D)	layers				
5.	Hot s	prings are						
	(A)	periodic discharges of hot ground water						
	BY	more or less continuous discharges of		ound water				
	(C) surface water body with high temperature							
	(D)	reservoir confined above and below les	ss per	meable rocks				
6.	Chela	ition encourages						
	(A)	chemical weathering	(B)	physical weathering				
	(C)	biological weathering	(D)	desilication				
			\- <i>\</i>					
7.	Loess	is a						
	VAS	wind deposit composed of silt	(B)	wind deposit composes of gravel				
	(C)	river deposit composed of sand	(D)	river deposit composed of gravel				
8.	Salt v	veathering is also called as						
	(A)	thermoclasty	(B)	slaking				
	(C)	dissolution	(D)	haloclasty				
9.		es are formed due to	,,,,,,					
	VAY	deposition near the banks of the river	(B)	deposition near the foot hills				
	(C)	deposition near the beach	(D)	deposition along the estuaries				

10.	Inne	er par	t of the co	ore is				
	(A)	Vac	cum			(B)		Liquid
	(0)	Sol	id			(D)		Water vapour
11.	Oxid	lation	weather	ing chie	fly affect	S		
	(A)	mir	nerals con	ntaining	carbon	(B)		minerals containing calcium carbonate
	(C)	mir	nerals con	ntaining	organic	content (D)	^	minerals containing iron
12.	Ches	stnut	soils are	develop	ed under			
	(A)		-grass pr		getation	(B)	•	short-grass vegetation
	(C)	con	iferous fo	rests		(D)		tropical rain forests
13.	Sphe	eroida	l weather	ring occ	urs becar	ne weathering	g	is more intense on
	(A)	upp	er layer	of basen	nent rock	(B)		igneous rocks
	(C)	inte	erior part	of rock	formatio	on CDY	^	edges and corners
14.	Mine (C)	wea	ability is thering s lation		lled as	(B) (D)		crystallography mobility series
15.	Mato	ch the	List - I	with Lis	t – II			
		List -	- I			List - II		
	(a)	Pale	osols		1.	two-types of	p	arent material
	· (p)	Poly	genetic so	oils	2.	sequence of	so	pil profiles
	(c)		posite pro	ofile	3.	ancient land	cape	
	(d)	Soil	catena		4.	complex soil	8	
		(a)	(b)	(c)	(d)			
	VAT	3	: 4	1	2			
	(B)	3	4	2	1			
	(C)	4	3	1	2			
	(D)	1	2	3	4			
16.	Magi	netic ı	reversals	are use	ful in giv	ring relative a	n	d absolute dates to events in
	(A)	Mou	intain for	mation		(B)		Shoreline changes
	(C)	Pale	eochanne	ls		, Or	•	Ocean basins

2.1.	U.Z.Z.	ic of determining the age of the	Cui vii io uinoc	arou oj
	(A)	Tree rings	(B)	Sedimentary basins
	(C)	Meteorites	(D)	Radioactivity
18.	Frost	action will normally takes place	ce in	
	JAY	Cold environments	(B)	Dissert environments
•	(C)	Seafloor	(D)	Mid-ocean ridges
19.	Hang	ring valley is higher than the		
	LAS	Main stream	(B)	Mountain
	(C)	Reservoir .	(D)	Backwaters
00	YT 1			
20.	(A)	o fracturing process comes und Chemical weathering	er Ø	Physical or mechanical weathering
	(C)	Biological weathering	(D)	All of the above
	(0)	Diological weathering	(D)	All of the above
21.	A Cal	ldera that develops where colla	pse is followed	by the doming of the central block is
	(A)	Explosive caldera	(B)	Collapse caldera
	ver	Resurgent caldera	(D)	Erosion caldera
22.	Pick o	out the right statement		
	(A)	Symmetrical ripples help in d	etermining cu	rrent direction
	(B)	Bed thickness is a criteria in	determining ov	verturned beds
	ver	Fossils may be of great help in	n indicating w	hether beds are right side up or not
	(D)	Current ripples can be used to	o determine to	p from bottom
00				
23.		ts are	(D)	Volcanic hills
	(A)	Volcanic chains	(B)	
	(C)	Volcanic islands		Flat-topped seamounts
24.	The s	subsidiary folds of main recumb	ent folds may	be called as
	·w	digitations	(B)	root zone
	(C)	arch-bend	(D)	kink bands
-11-1	25			
25.		ify the fault in which the hand		
	(A)	Wrench fault	(B)	Strike-slip fault
•,	(C)	Detachment fault	(40)	Thrust fault

26.	Name the fold in which to	wo limbs dip away from each other					
	(A) Fan fold	(B) Anticlinal fan fold					
	Synclinal fan fold	(D) Box fold					
27.	Very complex patterns of	soft – sediment folds may be termed as					
	(A) Tepee structure	Convolute bedding					
	(C) Flame structure	(D) Dish structure					
28.	Identify the important or	torio for manustrical alancification					
40.		teria for geometrical classification					
		dip and pattern of faults					
		ault relative to the attitude of the adjacent rocks					
	III the angle at which t						
	IV the apparent moven						
	(A) Both I and II are in						
	(B) I, II and III are imp						
	I, II, III and IV are						
	(D) II, III and IV are in	iportant					
29.	Anderson theory explains						
	(A) the formation of con						
	(B) the formation of ba						
	(C) the formation of fra	actures occupied by ring dikes					
		ctures occupied by ring dikes and cone sheets					
20	Dim on Californian Communication	and the state of t					
30.	Primary foliation forms are those that form						
	(A) after the crystallisation of magma during the flowage of a partially crystallised magma						
		allisation of magma					
		of a entirely crystallised magma					
	(D) during the nowage	or a entirety crystamsed magnia					
31.	Match the List I with the	List II and select the answer using the codes given below the Lists					
	List I	List II					
	(a) Lava cones	1. huilt chiefly of pyroclastic material					
	(b) Hornitos	2. built of alternating layers of Lava and Pyroclastic material					
	(c) Pyroclastic cones	3. are broad cones with low angles of slope					
	(d) Composite cones	4. relatively small, eruption of plastic blobs of lava					
	(a) (b) (c)	(d)					
	(A) 3 4 2	1					
	(B) 3 2 4	1					
4 1	(C) 3 4 1	2					
	(D) 3 1 2	4					
ACF	GE	6					

32.	Which	ch of the following is / are wron	g?							
	II	Distinction of differentiated si	ll from compo	site sill may be difficult						
•	III	A differentiated sill will have	at both the top	and bottom relatively thick la	iyers					
	(A)	Only III is correct								
r	BY	Both I and II are correct								
	(C)	I and III are wrong								
	(D)	Only II is correct			4.					
1										
33.	Whic	ch one of the following is correct	tly matched?							
	I	Laccolith -	up lifted along an arcuate fault							
	II	Bysmalith -	domed up t	he strata						
	III	Bushveld Igneous complex -	Lopolith							
٠	IV	Phacolith -	Oval shape	in cross section						
	(A)	I	(B)	II						
	Jos	III	(D)	IV						
34.		e the bedding that develops w			-					
		bar, over the front of a sand du			a.					
	(A)	Graded bedding	(B)	Hummocky cross bedding						
	The same	Cross bedding	(D)	Torrential bedding						
35.	In or	on of the folds listed below the	J. C atian	han han intones so that the l						
50.		ne of the folds listed below, the en and thin	deformation	has been intense so that the t	eus become					
	(A)	Open fold	(B)	Drag fold	•					
	(C)	Parellel fold	(D)	Tight fold						
	(0)	r arener fold	الطل	right fold						
36.	Cons	ider the following statements:			Ł					
			we the unconf	ormity may consist of congler	morate with					
	Assertion (A): The lower beds above the unconformity may consist of conglomerate with pebbles									
	Reas	Reason (R): These pebbles show composition similar to those formations lying below the unconformity								
	(A)	Both (A) and (R) are individu	ally true but (R) is not the correct explanation	on of (A)					
	·(B)	(A) is true but (R) is false								
	(C)	(A) is false but (R) is true								
	DY	Both (A) and (R) are individu	ally true and (R) is the correct explanation of	f (A)					
			7		ACFGE					

37. Match the List I with List II and select the correct answer using the codes given below:

	List l				List II
(a)	En éc	chelon fa	ults	1.	Net slip is parallel to strike of the fault
(b)	Para	llel fault	3	2.	Hanging wall moved downward
(c)	Strike-slip fault		3.	Short faults that overlap each other	
(d)	Norn	nal fault		4.	Faults have essentially the same dip and strike
	(a)	(b)	(c)	(d)	
(A)	3	4	2	1	
Br	3	4	1	2	
(C)	3	2	4	1	
(D)	3	1	2	4	

- 38. Which is the correct statement for up thrust fault?
 - (A) A fault in which the footwall has been the active element
 - A high angle fault along which the relatively uplifted block has been the active element
 - (C) A fault that dips less than about 10° and has a large net slip
 - (D) It is a low angle normal fault due to downhill sliding of rocks from an uplifted region
- 39. The explanation of the term: "Décollement" may be that
 - (A) Sedimentary strata lying over the basement crystalline rock thrown into faulted segments because of the presence of salt beds of the base
 - Sedimentary strata lying over crystalline basement rock thrown into series of anticlines and synclines because of weak shales and salt beds at the base
 - (C) Sedimentary strata over the crystalline basement rocks thrown into recumbent folds because of the presence of salt beds at the bottom
 - (D) Sedimentary strata above the basement rocks thrown into complex fold patterns because of the presence of shale layer at the bottom
- 40. Mention the other name of strike-slip faults
 - (A) Detachment faults

(B) Reverse faults

(C) Wrench faults

(D) Gravity faults

- 41. The top most of the Kistna group is
 - (A) Pulivendla quartzites

Srisailam quartzites

(C) Bairenkonda quartzites

(D) Gulcheru quartzites

Whic	n group is particularly well developed	d in the	eastern part of the Cuddapah basin?				
(A)	Papaghni group	(B)	Kistna group				
Jan	Nallamalai group	(D)	Cheyair group				
The r	name 'Gondwana' was introduced in I	1872 by					
(A)	H.B. Medlicott	(B)	James Hutton				
(C)	William Smith	(D)	R. Bruce Foote				
(A)	Triassic	BY	Cretaceous				
(C)	Jurassic	(D)	Carboniferous				
The I	Dharwars were first studied in 1880 l	ру					
(A)	Thomas Holland	(B)	Smeeth				
JOYA	R. Bruce Foote	(D)	D. Rama Rao				
•			Kolar belt				
(C)	Chitaldrug belt	(D)	Nagamangala belt				
The Dharwars exhibit ———— plunging folds.							
(A)	Southerly	(B)	Westerly				
SCA	Northerly	(D)	Easterly				
Whic	h one of the following sequence is tru	e for the	e Cuddapah super group?				
JAY	Kistna, Nallamalai, Cheyair, Papag	hni					
(B)	(B) Kistna, Nallamalai, Papaghni, Cheyair						
(C)	Nallamalai, Kistna, Cheyair, Papag	hni					
(D)	Nallamalai, Kistna, Papaghni, Che	yair					
Pick	out the correct sequence						
Say	Bhander, Rewa, Kaimur, Semri	(B)	Bhander, Rewa, Semri, Kaimur				
(C)	Rewa, Bhander, Semri, Kaimur	(D)	Rewa, Bhander, Kaimur, Semri				
	(A) (C) The I (A) (C) The I (A) (C) The I (A) (C) Whice (C) The I (A) (C) Pairly (C) Whice (C) Pick (C)	(A) Papaghni group (C) Nallamalai group The name 'Gondwana' was introduced in It (A) H.B. Medlicott (C) William Smith Which one of the following terms is de originally applied to rocks extensively dev (A) Triassic (C) Jurassic The Dharwars were first studied in 1880 to (A) Thomas Holland (C) R. Bruce Foote Fairly full succession of the Dharwars is form of the Shimoga belt (C) Chitaldrug belt The Dharwars exhibit — plum (A) Southerly (C) Northerly Which one of the following sequence is true (A) Kistna, Nallamalai, Cheyair, Papag (B) Kistna, Nallamalai, Papaghni, Cheyair, Papag (C) Nallamalai, Kistna, Cheyair, Papag (D) Nallamalai, Kistna, Papaghni, Cheyair, Papag (D) Rallamalai, Kistna, Papaghni, Cheyair, Papag	(A) Papaghni group (D) The name 'Gondwana' was introduced in 1872 by (A) H.B. Medlicott (B) (C) William Smith (D) Which one of the following terms is derived foriginally applied to rocks extensively developed in (A) Triassic (D) The Dharwars were first studied in 1880 by (A) Thomas Holland (B) (C) R. Bruce Foote (D) Fairly full succession of the Dharwars is found in (B) (C) Chitaldrug belt (D) The Dharwars exhibit plunging fold (A) Southerly (B) (C) Northerly (D) Which one of the following sequence is true for the (A) Kistna, Nallamalai, Cheyair, Papaghni (B) Kistna, Nallamalai, Papaghni, Cheyair (C) Nallamalai, Kistna, Cheyair, Papaghni (D) Nallamalai, Kistna, Papaghni, Cheyair (C) Nallamalai, Kistna, Papaghni, Cheyair (C) Nallamalai, Kistna, Papaghni, Cheyair (C) Bhander, Rewa, Kaimur, Semri (B)				

50.	Large trunks as well as broken piece		
	Trichinopoly Group	(B)	Uttatur Group
	(C) Ariyalur Group	(D)	Niniyur Group
51.	Which one of the following does not i	indicate physi	cal evidence of correlation?
	(A) Unconformable relations	(B)	Structural development
	(C) Continuity of strata	DY	Evolutionary development
52.	Which one of the following is in the	correct order o	of sequence?
	System, Series, Stage, Zone	(B)	Series, System, Stage, Zone
	(C) System, Series, Zone, Stage	(D)	Series, System, Zone, Stage
50	Which are of the following towns	was saiding	lly used in Geology by Fuchsel for th
53.	continuous succession of strata prod		
	Formation	(B)	Group
	(C) System	(D)	Series
54.	Which one of the following groups of	the Vindhyan	s is mainly calcareous?
	(A) Rewa Group	BY	Semri Group
	(C) Kaimur Group	(D)	Bhander Group
55.	The duration of the cretaceous period	d is	
	(A) 80 million years	DY	70 million years
	(C) 55 million years	(D)	40 million years
56.	The fossils definitely indicate a ——	age	for the Panchet Group.
	(A) Upper Carboniferous	- (P)	Lower Triassic
	(C) Upper Triassic	(D)	Middle Triassic
57.	Needle Shales are found in		
01.		(B)	Barakar
	(C) Raniganj	(D)	Karharbari
ACF	GE	10	

00.	The g	eological age of Arryalul Group ta	mges mom	
	(A)	Maastrichtian to Danian	(B)	Cenomanian to upper Albian
	(C)	Turonian to Senonian	(D)	Senonian to Maastrichtian
59.	Myrn	nekite is sometimes seen, while fir	ne grained	Anlite is common in
00.	(A)	Peninsular Gneiss	(B)	Charnockite
	(C)	Closepet Granite	(D)	Champion Gneiss
	CLO)	Closepet Grame	(1)	Onampion Griess
60.		ding to B. Rama Rao's classificat	ion of the	Dharwars, Shimoga and Bababudan belts
	CAY	West - central group	(B)	East - central group
	(C)	Easternmost group	(D)	Westernmost group
61.	The p	process of complete mineralization	of the ori	ginal structures of plants, bones or shell
	by wh	nich more or less original material	is preserve	ed, is known as
	(A)	Recrystallization	(B)	Petrifaction
	(C)	Carbonisation	(D)	Pyritization
62.	In wh	ich of the following gastropod, the	e dextral co	iling is seen
	(A)	Physa		Conus
	(C)	Planorbis	(D)	Cypraea
63.	Two	small calcareous plates by which d	lelthyrium	is closed in Brachiopods are called
	(A)	Anterior area	(B)	Deltidium
	(C)	Pseudodeltidium	(D)	Foramen
64.	Whia	h one of the following Gastropods	ovhibite ei	nistral cailing?
04.	(A)	Murex	(B)	Cerithium
	SOY	Physa	(D)	Conus
	العلق	Tilysa	(D)	Conus
1				
65.	All th	e whorls except the last whorl cor	nstitute —	of the shell in Gastropods.
	LAY	Spire	, (B)	Protoconch
	(C)	Body whorl	(D)	Suture

66.	(A)	Paleoichnology		Taphonomy	
	(C)	Mineralization	(D)	Distillation	
67.	The s	simplest form of cepha pod	shell is a straigh	t cone, which is termed as	
	(A)	Gyroceracone	(B)	Orthoceracone	
	(C)	Tarphyceracone	(D)	Cyrtoceracone	
68.	The t	third and posterior part of the	he exoskeleton of	trilobites is known as	
	(A)	Cephalon	(B)	Glabella	
	FLOY	Pygidium	(D)	Thorax	
69.	In Br	achiopods, the spiriferid typ	oe of shells have		
	LAY	Straight hinge line and wi		the length	
	(B)	Straight hinge line and wi	dth is less than t	he length	
	(C)	Curved hinge line and len	gth is more than	the width	
	(D)	Curved hinge line and len	gth is less than th	ne width	
70.	The l	ophophore is enclosed in the Brachiopods	e mantle cavity of	Lamellibranchs	
	(C)	Gastropods	(D)	Cephalopods	
71.	The t	erm to define the equally de	eveloped teeth in	pelecypods is	,
	(A)	Taxodont	CBY .	Isodont	
	(C)	Teleodont	(D)	Schizodont	
72.	Whic	h one of the following is a di	myarian Lamelli	branch?	
	JAY	Venus	(B)	Ostrea	
	(C)	Pecten	(D)	Gryphea	
73.	If the	e ligament in Lamellibranch	s is made up of si	ngle layer of muscles, it is ter	med as
	(A)	Alvincular	(B)	Multivincular	
	(C)	Paravincular	(D)	Postvincular	
ACI	FGE		12		. 10

14.				bresent — to the umbo.
	(A)	Anterior and Posterior	(B)	Posterior and Anterior
	(C)	Dorsal and Anterior	(D)	Posterior and Dorsal
75.	In La	amellibranchia, if the ligament	lies behind the	e umbo, the condition is known as
	SA	Opisthodetic condition	(B)	Prosodetic condition
	(C)	Amphidetic condition	(D)	Prosogyre condition
76.	The defin		with rounded	saddles and somewhat angular lobes is
1	LAYA	Goniatite suture	(B)	Ammonite suture
	(C)	Ceratitic suture	(D)	Nautilitic suture
77.	The a	angle between the two sides of	the spire conve	erging near the protoconch is known as
	SAT	Spiral angle	· (B)	Axial angle
	(C)	Pleural angle	(D)	Primary angle
78.	The	convolute type of form of the sh	nell is noticed i	n
	(A)	Voluta	De la company	Cypraea
	(C)	Trochus	(D)	Conus
79.	Whic	h one of the following genus be	elongs to class	Inarticulata of phylum Brachiopoda?
	JAY	Lingula	(B)	Terebratula
	(C)	Spirifer	(D)	Productus
80.	lf the	Umbo in Lamellibranch is po	inted towards	anterior side, then it is known as
	JAY	Prosogyre condition	(B)	Opisthogyre condition
	(C)	Orthogyre condition	(D)	Spiral condition
81.	Four	fold axis of symmetry is also c	alled as	
	(A)	Trigonal axis	(B)	Tetragonal axis
	(C)	Hexagonal axis	(D)	Binary axis

82.	Dite	tragonal pyramid in Tetragonal sys		
	(A)	Eight similar faces	JBY .	Sixteen similar faces
	(C)	Eight discontinuous faces	(D)	Sixteen irregular faces
83.	The	type mineral for normal class of or		
	(A)	Epsomite	(B)	Calamine
	John	Barite	(D)	Gypsum
84.		prism of the first order in normal		exagonal system has six faces, each one
	(A)	all horizontal axes at equal dista	nces	
	Jay	two adjacent horizontal axes a horizontal axis	t equal dis	stances, while it is parallel to the thir
	(C)	all horizontal axes at unequal dis	stances	
	(D)	only one horizontal axis		
85.	The	type mineral for normal class of M	onoclinic sy	vstem is
	(A)	Clinohedrite	D	Gypsum
	(C)	Axinite	(D)	Tourmaline
86.	Opei	n forms occur in all the systems, ex	cept	
	(A)	Isometric system	(B)	Tetragonal system
	(C)	Orthorhombic system	Dy	Monoclinic system
87.	The	Miller indices of Trisoctahedron of	Isometric s	system is
	(A)	hll	Dyn	
	(C)	hkl	(D)	hko
00	The	forms belonging to the normal clas	a of the Tot	ragonal evetam has
88.		only one horizontal plane of sym		ragonal system has
	(B)	two planes of symmetry	metry	
	(C)	no centre of symmetry		
	(D)	six axes of symmetry	•	
	(1)	See Groot of Symmetry		
89.				unlike planes of symmetry meeting at
	(A)	30°	(B)	45°
	(C)	60°	a Copy	90°
ACI	GE		14	

30.	THE C	ortho-axis in Monochine system is also	o caned	as
	(A)	á – axis	(B)	clino – axis
	(0)	b – axis	(D)	vertical "c" axis
91.	The a	angles of inclination between like faces	on the	crystals of any species are essentially
	(A)	depends on the intersection of axes	(B)	vary from one area to other
	(C)	depends on the parallelism to axes		constant
92.	There	e may be variation in the size of like fa	aces, th	us producing
		crystalline massive forms	(B)	different crystallines
	JOY	distorted forms	(D)	pseudomorphous forms
93.	An az	xis of symmetry is always normal to a	possibl	e crystal face and parallel to the
	(A)	two similar faces		edge of intersection of two crystal faces
	(C)	two dissimilar faces	(D)	a crystallographic plane
94.		ne includes a series of faces of a crysta ch other and to a common line drawn		e intersection – lines are mutually parallel the centre of the crystal, called the
	(A)	Zonal plane	BY	Zone – axis
	(C)	Zonal equation	(D)	Mimetic zone
95.	The f		tem is b	bounded by forty-eight similar faces, each
	(A)	three axes at equal distances	(B)	two axes at unequal distances
	LOYA	three axes at unequal distances	, (D)	
96.	The l	Miller indices for the face of Ditetrago	nal pris	um of Tetragonal system is
00.	· (A)	hko	(B)	hhl
	(C)	hol	(D)	hkl
	(-)		(-)	
97.	In Or	rthorhombic system, of the two horizon	ntal axe	
	(A)	"a" axis	BY	
	(C)	brachy axis	(D)	vertical "c" axis
98.	The f	forms of normal class in Hexagonal sy	stem be	ave
00.	(A)	six horizontal planes of symmetry		six vertical planes of symmetry
	(C)	six horizontal 6-fold axis of symmetry	1000	
	(0)	- I TO A TO	-	ACECT

99.	The s	ymbol hkl represent the face	e of a form —	in monoclinic system.	
	(A)	Clino-dome	(B)		
	500	Pyramid	(D)) Ortho-dome	
100.	The d	liametral prism of normal cla	es in Triclinia	evetem has	
100.	. (2)	three sets of unlike faces	(B)		
	(C)	two sets of unlike faces	(D)		
101.	Whie	h of the following does not ha	re basal cleava	ge?	
	· CAST	Isometric system	(B)	Tetragonal system	
	(C)	Hexagonal system	(D)	Rhombohedral system	
102.	All th	ne forms having three axes of eq	ual lengths an	nd are at right angle to each other belong t	
	w	Isometric system	(B)	Tetragonal system	U
	(C)	Hexagonal system	(D)	Triclinic system	
103.	Tend less s	ency of a crystallized mimeral	to break in ce	rtain definite directions, yielding more o	r
	(A)	Elasticity ·	(B)	Cleavage	
	(C)	Porosity	(D)	Limit of plasticity	
104.	Whic	h of the following is orthorhomb	oic?		
	(A)	Diopside	(B)	Hypersthene	
	(C)	Augite		Hedenbergite	
105.	Whic	h of the following does not belor	ng to pyroxene	group?	
	(A)	Enstatite	OBY .	Braunite	
	(C)	Bronzite	(D)	Augite	
106.	Quar	tz is a mineral originated from			
	(A)	Magmatic segregation	, OBS	Pegmatitic	
	(C)	Hydrothermal		Sublimation	
107.	In 'M	loh's scale' of hardness which of	the following r	cepresents the value for quart-	
101.	(A)	6	(B)	7	
	(C)	8	(D)	9	
ACT	CE		16		

108.	Musc	ovite belongs to				
	(A)	Triclinic system	(B)	Monoclinic system		
	(C)	Orthorhombic system	(D)	Cubic system		
109.	Anth	ophyllite belongs to				
100.	(A)	Triclinic system	(B)	Monocline system		
	LOY	Orthorhombic system	(D)	Tetragonal system		
110.	Hard	ness of muscovite's greatest				
	(A)	On cleavage	(B)	Across cleavage		
	(C)	At an acute angle to cleavage	(D)	At an obtuse angle to cleavage		
111.	Face	of a crystal parallel to which there is	a perfe	et cleavage often shows a		
	(A)	Vitreous luster	(B)	Resinous luster		
	(C)	Greasy luster	(20)	Pearly luster		
112.	Plane	es of cleavage are				
	LAST	Parallel to crystal faces	(B)	Perpendicular to crystal faces		
	(C)	At an acute angle to crystal faces	(D)	At an obtuse angle to crystal faces		
113.	Whic	h of the following is negative biaxial	crystal			
	(A)	Topaz	(B)	Staurolite		
	ver.	Kyanite	(D)	Sillimanite		
114.	Which of the following are diagnostic features of kyanite (i) Variable hardness (ii) Colour (iii) Habit					
٠	(A)	(i) Only	(B)	(ii) Only		
	(C)	(i) and (ii) Only	SEN .	(i) (ii) and (iii)		
115.	Speci	fic gravity of amphiboles				
	·w	Increases with increase in Iron cont	ent			
27	(B)	Decreases with increase in Iron con				
	(C)	Increases with decrease in Iron con-				
	(D)	Does not change with change in Iron	n conten	t		

116.	_				ed from		e determination of	
	100		cific grav	rity		(B)	Refractive index	
	(C)	Cole	our			(D)	Luster	
117.	Mate	ch the	followin	g:				
	(a)	Alma	ndine		1.	Mg ₃ Al ₂ (SiO	ı)3	
	(b)	Pyroj	ре		2.	Mn ₃ Al ₂ (Si C)4)3	
	(c)	Spess	sartine		3.	Ca ₃ Al ₂ (Si O	4)3	
	(d)	Gross	sular		4.	Fe ₃ Al ₂ (Si O	1)3	
		(a)	(b)	(c)	(d)	-		
	(A)	1	2	3	4			
	(B)	2	3	4	1			
	(C)	3	4	1	2			
	V.Dy	4	1	2	3			
	****		****					
118.				lour mii	neral oc		granite pegmatites?	
	(A)		covite .			(B)	Phlogopite	
	(C)	Biot	ite				Lepidolite	
119.	Brow	vn var	iety of m	uscovit	e closely	resembles		
	(AY		gopite			(B)	Biotite	
	(C)		dolite			(D)	Glauconite	
r								
120.	Horr	blend	e in disti	nguishe	d from	pyroxene by its		
	(A)	Lust	er			(B)	Streak	
	O.C.	Clea	vage			(D)	Refractive index	
101	Imma		ilea aontas	ining al	aun dan t	augusta and all	cali feldspar are known as	
121.	(A)		rated ro		Junuam		Over saturated rock	
	·(C)		rmediate			(D)	Under saturated rock	
	(0)	inte	rmediate	TOCK		(1)	United Saturated rock	
122.	Cres	cent s	haped bo	dies of	igneous	rocks that occ	upy crest and troughs of folded stra	ata are
	calle							
	(A)	Lope	olith			(B)	Lacolith	
- 7	SCY	Pha	colith			(D)	Batholith	
ACF	GE					18		

123.	Textu	ares produced by flow in magma d		
	(A)	Intergranular	(B)	Directive
	(C)	Ophitic	(D)	Poikilitic
124.	Com	non and essential mineral constit	uents of gr	anite are
	(A)	Plagioclase feldspars	(B)	Quartz and feldspar
	(C)	Orthoclase and albite .	(D)	Calcic plagioclase
125.	Base	d on color index peridotite belongs	to	
	(A)	Leucocratic	. OPK	Malanocratic
	(C)	Mesocratic	(D)	Hyalocratic
126.	-			from 2 mm to 64 mm in diameter
	(A)	Ash	(B)	Tuff
	ver.	Lapilli	(D)	Bombs
127.	Whio	h of the following pairs is an exam	nlo for coli	d solution?
121.	SAY		(B)	Orthoclase – Albite
	(C)	Orthoclase - Quartz	(D)	Diopside – Anorthite
	(0)	Orthoclase - Quartz	(D)	Diopolac Photonico
128.	The p	percentage of Al ₂ O ₃ in igneous roc	ks ranges	
	(A)	40–50 %	(B)	10–20 %
	(C)	30–40 %	(D)	25–35 %
129.	Dowti	ally digested xenoliths are		
140.	(A)	Acid rocks	(PC)	Hybrid rocks
	(C)	Basic rocks	(D)	Unhybrid rocks
	(0)	Dasic focks	(D)	Ollhybrid rocks
130.	-	is a glassy rock of acid comp	osition	
	(A)	Pitchstone	(B)	Pumice
	CO	Obsidian .	(D)	Oceanite
131.		texture with glassy or fine grain as is called	ed chloriti	c or serpentinous materials in the inter
	(A)	Intergranular texture	(B)	Sub-ophitic texture
	(8)	Intersertal texture	(D)	Hyalophitic texture

132.	The process of alteration of plagioclase in to epidote is called							
	(A)	Sericitization	(B)	Uralitization				
	(C)	Biotitization		Saussuritization				
133.	Phen	nocryst of the same or different min	erals occur	ring in a cluster is				
	(A)	Hiatial porpyritic	(B)	Glomeroporphyritic				
	(C)	Seriate	Or	Cumulophyric				
134.	The	temperature range for which the B	owen's rea	ction series has been worked out is				
	NAS	1100°C to 573°C	(B)	573°C to 383°C				
	(C)	1335°C to 876°C	(D)	900°C to 775° C				
135.	A pro		gona break	s up to form rocks of different composition				
	(A)	Assimilation	(B)	Fractional crystallization				
	(C)	Equilibrium crystallization	Cor	Magmatic differentiation				
136.	A zone of finer grain size resulting from the rapid solidification of the pluton. When it comes in contact with cooler country rock is called							
	(A)	Chill zone	(B)	Agmatite zone				
	(C)	Apophyses zone	(D)	Schlieren zone				
137.		is a structure in which phen	ocrysts seg	gregate in to clots				
	(A)	Vitrophyric	(B)	Orthophyric				
	(C)	Felsophyric	VO)	Glomero – porphyritic				
138.	The f	first mineral to crystallize in the di						
	(A)	Mg – pyroxene	(B)	Olivine				
	(C)	Fe - pyroxene	(D)	Anorthite				
139.	The l	hyphabyssal equivalent of diorite is	3					
	(A)	Rhyolites	(B)	Andesite				
	(C)	Granite	NOT	Granophyres				

140.	A blu	e coloured alkali syenite containing	anorthod	clase is called
((A)	Nordmarkite	(B)	Larvikite
	(C)	Theralite	(D)	Teschenite
141.	Ident	ify the property which is not a part of	f the cla	astic texture
	(A)	Size	(B)	Roundness
	(C)	Sphericity	(B)	Overgrowth
142.	The s	hells that are associated with abyssa	ıl red cla	ay
	(A)	Pteropods	(B)	Globigerina
	(C)	Crinoids	(D)	Radiolaria .
143.	The g	rain size range of sand is		
	(A)	2 to 4 mm	B	2 to 1/16 mm
	(C)	1/16 to 1/256 mm	(D)	4 to 64 mm
	-		4	
144.	The g	lobigerina ooze, contains chiefly of		
	was.	Planktonic feraminifera	(B)	Benthic feraminifera
	(C)	Pteropods	(D)	Radiolarians
145.	The r	esidual laterite and bauxite deposits	are the	weathering products of
	(A)	Temperate regions	BI	Tropical and sub-tropical regions
	(C)	Acid regions	(D)	Tundra regions
146.	A clay	y rich rock which lacks fissility is		
	(A)	Shale	(B)	Kaolinite
	C	Mudstone	(D)	Black shale
147.	Name	e the coal which has highest concentr	ation of	carbon and poor volatile materials
	(A)	Lignite	(B)	Bituminous
	LOY	Anthracite	(D)	Cannel coal
		141		

148.	A fe	ldspathic sandstone that	contain	s more than	25% feldspar may be termed as			
	(A)	Subarkose		Car'	Arkose			
	(C)	Graywacke		(D)	Ganister			
149.			that co	ntains consid	lerable proportion of carbonates of line an	d		
- "	(A)	nesia Shale		(DA)	Marl			
	(C)	Graywacke		(D)	Dolomite			
150.	Mar	ine organisms of diatoms	which i	form diatoma	aceous oozes are restricted to			
	(A)	Tropical climate zone		(B)	Subtropical climate zone			
	(C)	Polar climate zone		SON	Sub polar climate zone			
151.	Whie	ch is wrongly matched?						
	I	Pottery clay	_	Aluminous	clay free from Iron			
	II	Fire clay	_		aking refractory bricks			
	III	Brick clay			ompounds of Iron and magnesium			
	IV	China clay	_		tic material containing illite clay mineral			
	(A)	I		(B)	II			
	(C)	Ш		S				
152.	Asse	ertion (A). Fragments in	n congl	omerate heds	are rounded			
	Assertion (A): Fragments in conglomerate beds are rounded Reason (R): These fragments of clastics travelled long distance of transport							
		A) Both (A) and (R) are individually true but (R) is not a correct explanation of (A)						
	01				(R) is the correct explanation of (A)			
	(C)	(A) is true but (R) is fals		ily vi uo uliu (is the correct expanded of (12)			
	(D)	(A) is false but (R) is tru						
153.	Whic	ch is not the correct staten	nent?					
	(A)				nolluscan shells called pteropoda			
	(B)	Chalk is a consolidated	ooze ric	ch in foramin	lifera, sponge spicules, cocoliths etc			
	(0)	Guano is a siliceous dep	osit of	organic origin	n			
	(D)	The accumulation of fer precipitation produces by			cteria along with granules due to chemica	1		

22

ACFGE

154. Match the List - I with List - II and select the answer from the codes given below:

List - I

List - II

(a) Loess

1. Glacial deposit

(b) Tillite

- 2. Graywackes
- (c) Black shale
- 3. Calcareous wind formed silt
- (d) Old Red sandstone
- 4. Rich in carbonaceous matter and Iron sulphide

(a)

3

(b)

1

- (c)
- (A) 3

(d)

2

- S
- 4

2

1

- (C) 3
- 4

2

500

- (D) 3
- 4 1
- 155. Consider the following about mode of formation of residual deposits
 - 1. Humid tropical is the favourable climate
 - 2. The relief must not be very great
 - 3. Long continued crustal instability is essential
 - 4. There should be conditions for good drainage

Choose the correct one:

(A) 1 and 2 only

(B) 1, 2 and 3 only

1, 2, and 4 only

- (D) 1, 2, 3 and 4 only
- 156. Which of the following is correctly matched?
 - I. Clay and silt
- Angular fragments
- II. Sand grade
- Saltation

III. Gravels

- Suspension

IV. Breccia

- Arenaceous

(A) I

W II

(C) III

(D) IV

157.	Consi	der the following statement	3.	
	Asser	tion (A): Breccias and cangular, and re		ous rocks and their shapes are
	Reaso		ls suffered little or no traderable transport	cansport and conglomerates have
	W	Both (A) and (R) are true	nd (R) is the correct expla	anation of (A)
	(B)	Both (A) and (R) are true l	ut (R) is not the correct e	xplanation of (A)
	(C)	Both (A) and (R) are false		
	(D)	(A) is true but (R) is false		
158.	Which	h is correctly matched?		
	I.	Freestone -	A uniform thick bedden planes	ed sandstone with few divisiona
	II.	Volcanic breccia -	Mylonisation	
	III.	Oil shale -	Rich in sulphide of iron	n
	IV.	Talus -	Rounded fragments	
	M	I	(B) II	
	(C)	III	(D) IV	
159.	Point	out the wrong statement in	the following	
	(A)	Evaporites are due to evap	oration and the deposits	include salt and gypsum
	(B)	Siliceous deposits one che		
	(C)			osites by mechanical means
	S)	Rudaceous rocks consist c	niefly particles of sand-g	rade
160.	Ident	ify the rock which is highly		
	(4)	Boulder clay	(B) Arkose	
	(C)	Conglomerate	(D) Arenite	
161.	Ore 1	ninerals are normally		
	W	Profitable		rofitable
	(C)	Non-available	(D) Non-ex	xploitable
ACF	GE		24	

162.	The u	seless minerals which occur in associa	tion w	ith the ore are called
- 1	(A)	Tenor	(B)	Syngenetic
	(C)	Epigenetic	1	Gangue minerals
163.	Hydr	othermal ore deposits are examples of		
	1	Epigenetic ore deposits	(B)	Syngenetic ore deposits
	(C)	Gangue deposits	(D)	Placer deposits
164.	Exam	aple of nonmetallic mineral deposit is		
	N	Graphite	(B)	Copper
i	(C)	Lead	(D)	Zinc
165.	Gyps	um is		
	(A)	Sedimentation deposit	(B)	Replacement deposit
	(C)	Shear zone deposit	M	Evaporation deposit
166.	Gossa	an is an useful indicator for		
	(A)	Ground water	1	Ore deposits
	(C)	Hydrocarbon	(D)	Hot springs
167.	Colow	if a value of limits is about		
107.	Calor	ific value of lignite is about 7,500 B. T. U	(D)	7 000 P T II
	(2)		(B)	7,000 B. T. U
	(C)	5,500 B. T. U	(D)	10,000 B. T. U
168.	Ankle	eshwar oil field is located in		
	(A)	Bombay high	(8)	South of Narmada River
	(C)	Offshore of Tamil Nadu	(D)	Godavari basin

169.	Cupi	Cuprite and tenorite are common ore minerals of									
	(A)	Hydr	ation zo	ne		(B)	Evaporat	tion zone			
	(C)	Meta	morphic	czone		(1)	Oxidatio	n zone			
170.	Digb	oi oilfi	eld has c	oil-beari							
	(24)	Mio-	pliocene	age		(B)	Oligocen	e age			
	(C)	Eoce	ne age			(D)	Cretaceo	us age			
171.	Earl	y magn	natic seg	gregation	n deposits are	formed a	as a result	of			
	(A) Crystallization at low temperature										
	(B)	(B) Residual liquid segregation									
	(0)	Gravitative crystallization differentiation									
	(D)	Immiscible liquid injection									
172.	The ore deposits of magnetite and ilmenite are formed by										
	(A)	Imm	iscible li	iquid se	gregation	(B)	(B) Hydrothermal solution				
	(0)	Resi	dual liqu	uid injec	tion	(D)	Immiscil	ble liquid injection			
173.	Mat	ch List	- I with	List – I	I .						
		List -	I					List - II			
	(a)	(a) Supergene enrichment zone					1.	Above water table			
	(b)	Gosea	in		1111		2.	Mechanical concentration			
	(c)	(c) Zone of oxidation					3.	Ferruginous residue			
	(d)	Place	rs				. 4.	Below water table			
- ×.		(a)	(b)	(c)	(d)						
	1	4	3	1	2						
	(B)	4	3	2	1						
	(C)	4	2	3	1						
	(D)	3	4	2	. 1			The second second			
		. 7									

174.	Mat	ch Lis	t – I with	List – II			1				
	List – I					List – II					
	(a)	Medium coking coal				Coking	Coking constitutent of coal				
	(b)	Fusa	in		2.	Brown coal					
	(c)	Lignite				Mineral charcoal					
	(d)	Clara	ain		4.	Volatile	Volatile content between 22% and 25%				
		(a)	(b)	(c)	(d)						
	(4)	4	3	2	1						
	(B)	4	3	1	2						
	(C)	1	2	3	4						
	(D)	4	1	3	2						
175.	Tale	hir co	al fields o	occur in							
170.	(A)		st bengal	ccui in			M	Orissa			
			-					Maharashtra			
	(C)	Bih	ar				(D)	Manarasntra			
176.	A stock work is										
	An interlacing network of small ore bearing veinlets										
	(B)										
	(C)	Fat lenses in schists									
	(D)	D) Closely spaced, distinct and parallel veins									
177.	Fluid inclusions are very commonly found in										
	(4)	Peg	matitic o	res			(B)	Saddle reef			
	(C)	Coa	1				(D)	Petroleum			
150						-					
178.	Gondwana coal normally occurs as						-0	D 10 1			
	(A)		situ depo				(3)	Driftes deposits			
	(C)	Hyd	lrotherm	al deposi	ts		(D)	Mesothermal deposits			
179.	The greatest period of coal – formation in India is										
	(A)	Mio	cene				(B)	Triassic			
	(C)	Eoc	ene				(M)	Permian .			
	-										

180.	In asymmetric folds, oil mostly occur in								
	(A)	Crest	(5)1	Gently - dipping limbs					
	(C)	Steep-dipping limbs	(D)	Trough					
181.	The age of Hutti gold deposit								
	CAN	Dharwar	(B)	Vindhyan					
	(C)	Cuddapah	(D)	Pleistocene					
182.	Whic	h one is base metal?							
	(A)	Gold	(B)	manganese					
	(C)	Nickel	M	Copper					
183.	-	h rock mostly associated with fire clays							
	(1)	Coal	(B)	Bauxite					
	(C)	Basalt	(D)	Granite					
184.	Agni	gundala copper deposit situated at							
	(A)	Trichinopoly	(B)	Gondwana basin					
	(0)	Cuddapah Basin	(D)	Vindhyan					
185.	Gold	dissolves in							
100.		Sulfuric acid	(B)	Perchloric acid					
	(A) (C)	Acetone	01	Aquaregia					
	(0)								
186.	Big c	hunks of gold are called	+						
	(A)	Quartz-vein	(B)	Fractured vein					
	(0)	Nuggets	(D)	Blankets					
			•						
187.	Mala	njkhand copper deposits is in							
	(A)	Rajasthan	(B)	Bihar					
	(C)	Sikkim	(0)	Madhya Pradesh					
ACF	GE	28	8						

188	For v	which mineral in India is self sufficien	it?	
	(A)	Copper	(B)	Lead
	9	Iron	(D)	Zinc
				The state of the s
189	. In w	hich state calcite deposit occur abund	antly?	
	(A)	Tamil Nadu	(B)	Odisha
	(0)	Rajasthan	(D)	West Bengal
190	Phos	phorite deposits found in		
	(4)	Udaipur (Rajasthan)	(B)	Salem (Tamil Nadu)
	(C)	Srikakulam (Andhra Pradesh)	(D)	Cuttack (Odisha)
191.	Whic	h type of gold deposit is in Assam		
	(A)	Magmatic deposit	(B)	Residual concentration
	(C)	Load deposit	ON	Alluvial placer deposits
			211.1-	
192.	Tami	lnadu Bauxite deposits is a		
	(A)	Packet type	(B)	Interstratified type
	(0)	Blanket type	(D)	Placer type
193.	The a	age of Assam iron ore formation is	•	
	ON	Tertiary	(B)	Deccan trap
	(C)	Precambrian	(D)	Dharwar
	,			
194.	What	is the streak of Hematite mineral		
	(A)	Black	(B)	Golden yellow
	M	Cherry red	(D)	Brown

190.	WHIC	n type of clay used for pharmace detect								
	(2)	Kaolin	(B)	Bentonite						
	(C)	Fuller's earth	(D)	Fireclay						
196.	Huge deposits of bauxite are occur in									
	(A)	Kangra (Himachal Pradesh)	(B)	Chitoor (Andhra Pradesh)						
	(C)	Khetri (Rajasthan)	3	Korapet (Odisha)						
197.	Baux	ite deposit commonly associated with	which	type of rock						
	S	Laterite	(B)	Gabbro						
	(C)	Peridotite	(D)	Serpentite						
198.	Chromite is associated with									
	(A)	Granite	(B)	Dolerite						
	(C)	Pegmatite	5	Dunite						
199.	Mag	nesite used in								
	3	Alloys used in aeroplanes								
	(B) As an insulating material in electrical industry									
	(C)	Wide application in steel industry								
	(D)	In chemical industries for dry batter	ries							
200.	What is the tenor of Iron ore									
	5	30–50%	(B)	40–60%						
	(C)	20–40%	(D)	50–70%						

SPACE FOR ROUGH WORK

ACFGE [Turn over SEAL

ACFGE