	_		.,	
Register Number		1		

2014 MECHANICAL ENGINEERING

Time Allowed: 3 Hours]

[Maximum Marks: 300

ACEMCE

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. This Booklet has a cover (this page) which should not be opened till the invigilator gives signal to open it at the commencement of the examination. As soon as the signal is received you should tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the questions.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there in series without any omission and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you separately by the invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl, No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

A • © D

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. In all matters and in cases of doubt, the English Version is final.
- 13. Do not tick-mark or mark the answers in the Question booklet.

SPACE FOR ROUGH WORK

6n00247E

1. The force induced in the string AB due to the load 'W' as shown in Fig is

- (A) $W \sin \theta$
- (C) $W \sec \theta$

- (B) $W \cos \theta$ (D) $W \csc \theta$
- 2. The motion of a wheel of a car is
 - (A) Purely translation

- (B) Purely rotational
- (C) Combined translation and rotational (D)
- O) None of these
- 3. The forces, whose lines of action are parallel to each other and act in the same direction, are known as
 - (A) Coplanar concurrent forces
- (B) Coplanar non-concurrent forces

Like parallel forces

- (D) Unlike parallel forces
- 4. Moment of inertia of a circular section about its diameter (d) is
 - (A) $\pi d^3/16$

(B) $\pi d^3/32$

(C) $\pi d^4/32$

- D) nd4/64
- 5. The linear velocity of a body rotating at "w" rad/sec along a circular path of radius (r) is given by
 - (A) w/r

081 w.

(C) w^2/r

- (D) w².
- 6. Concurrent forces are those forces whose lines of action
 - (A) Lie on the same line

- (B) Meet at one point
- (C) Meet on the same plane
- (D) None of these
- 7. If I_{xx} = moment of inertia of xx axis and I_{yy} = moment of inertia about y axis, then moment of inertia about zz axis is given by
 - (A) $I_{zz} = I_{xx} I_{yy}$

(B) $I_{zz} = I_{yy} - I_{zz}$

 $I_{zz} = I_{xx} + I_{yy}$

- (D) None of the above
- 8. The unit of area moment of inertia is
 - (A) $kg-m^2$

(B) $kg-m-s^2$

(C) kg/m^2

(D) m'

9.	Which	of the following is a scalar quantity?		
	(A)	Force	BA	Speed
	(C)	Velocity	(D)	Acceleration
10.		algebraic sum of the moments of two oment of their resultant about that po		about any point in their plane is equal to the above statement is called
	(A)	Principle of motion	(B)	Varignon's theorem
	(C)	Lami's theorem	(D)	Principle of transmissibility
11.	The n	eutral axis of a beam		
14	(A)	The layers are subjected to maximum	bend	ing stress
	(B)	The layers are subjected to minimum	bendi	ing stress
	(C)	The layers are subjected to compress	ion	
	-DI	The layers do not undergo any strain		
12.	The m	naximum deflection of a fixed beam ca	rrying	a central point load lies at
	(A)	Fixed ends	(B)	Centre of beam
	(C)	1/3 from fixed ends	(D)	None of these
13.		omposite bar is cooled, then the natural expansion will be	re of	stress in the part with high co-efficient of
	W	Tensile	(B)	Compressive
	(C)	Zero	(D)	None of the above
14.	The P	'oisson's ratio for Cast Iron is		
	(A)	0.13	(B)	0.23
	(C)	0.013	(D)	0.43
15.	A loca	alised compressive stress at the area o	f conta	act between two members is known as
	(A)	Tensile stress	(B)	Bending stress
	w	Crushing stress	(D)	Shear stress
16.	The b	ending moment diagram for a simply	suppoi	rted beam loaded at centre is
	(A)	a right angled triangle	BY	an isoceles triangle
	(C)	an equilateral triangle	(D)	a rectangle
17.	In the	e torsion equation $\frac{T}{J} = \frac{\overline{L}}{R} = \frac{C\theta}{L}$, the term	rm .I/R	is called
	LAI OILC	J = R = L, the test	071	
	(A)	Shear modulus	(B)	Section modulus
	YON	Polar modulus	(D)	None of these

18.	The p	polar modulus for a solid shaft of diame	eter (D) is
	(A)	πD^2	(M)	πD^3
	(21)	4	7	16
	(C)	$\frac{\pi D^3}{32}$	(D)	$\frac{\pi D^4}{64}$
	(0)	32	(D)	64
19.	The p	product of Young's Modulus (E) and mo	oment o	of Inertia (I) is known as
	(A)	Modulus of rigidity	(B)	Bulk modulus
P	on	Flexural rigidity	(D)	Torsional rigidity
20.	Facto	or of safety is defined as the ratio of		
	1407	ultimate stress to working stress	(B)	working stress to ultimate stress
	(C)	breaking stress to ultimate stress	(D)	ultimate stress to breaking stress
21.	An is	othermal process is also called as		
	(A)	constant volume process	(B)	constant temperature process
	(C)	constant pressure process	(D)	none of the above
22.	A per	petual motion machine of second kind	violate	es
	(A)	Zeroth Law	(B)	First Law
	on	Second Law	(D)	Third Law
23.	In hu	midification process the dry bulb temp	eratur	re
	407	Remains constant	(B)	Increases
	(C)	Decreases	(D)	None of the above
24.	The r	efrigerant widely used in domestic ref	rigerat	ors is
	(A)	Carbon-dioxide	(B)	Sulphur dioxide
	on	Freon-12	(D)	Ammonia
25.	In a	vapour compression refrigeration syste	em, the	e sequential order of different components
	(A)	compressor, throttle valve, condenser	c. evan	orator
	(B)	compressor, evaporator, throttle valv	, A - 1	
	(C)	compressor, throttle valve, evaporate		

26. During sensible cooling process

- (A) DBT decreases
- (C) WBT decreases

- (B) RH increases
- (P) All the above

compressor, condenser, throttle valve, evaporator

27.	For t	he same compression ratio the effici	ency of di	iesel cycle is
	(A)	Greater than Otto cycle	•	Less than Otto cycle
	(C)	Equal to Otto cycle	(D)	Not equal to Otto cycle
28.	A clo	sed system is one in which		
	400	mass fixed though energy transfer	-	
	(B)	energy fixed though mass transfer		
	(C)	neither mass nor energy transfer t		ce
	(D)	both mass and energy transfer tak	es place	
29.	In th	ne polytropic process equation pv^n	= consta	nt, if n is infinitely large, the process is
		ed as		
	401	constant volume	(B)	constant pressure
	(C)	constant temperature	(D)	constant entropy
30.	Whic	h law states that the internal energ	v of a gas	is a function of temperature?
	(A)	Charles' Law	(B)1	Joule's Law
	(C)	Regnault's Law	(D)	Boyle's Law
31.	Whic	h of the following quantity is not the	property	y of the system?
	(A)	pressure	(B)	temperature
	(C)	specific volume	ON	heat
32.	All e	ngineering processes are		
	(A)	quasi-static	(B)	thermodynamically equilibrium
	(C)	reversible	1997	irreversible
33.	A pe	rfect gas at 27°C is heated at cons	stant pre	essure till its volume is double. The fina
4		erature is	The Par	
	(A)	54°C	(B)	327°C
	(C)	108°C	(D)	654°C
34.	Whic	h of the following property remains	constant	during throttling process?
	(A)	Internal energy	(B)	Pressure
	(C)	Entropy	(D)	Enthalpy
35.		Carnot cycle, heat is transferred at		
	(A)	constant pressure	(B)	constant volume
	5	constant temperature	(D)	constant enthalpy
ACF	MCE		6	

- 36. For an irreversible process,
 - (A) $\oint \frac{d\theta}{T} = 0$

(B) $\oint \frac{d\theta}{T} > 0$

 $\int \frac{d\theta}{T} < 0$

- (D) None of the above
- 37. The heat addition in dual combustion cycle is done at
 - (A) constant pressure
 - (B) constant volume

partly at constant pressure and partly at constant volume

- (D) constant temperature
- 38. One tonne of refrigeration is equivalent to
 - (A) 50 kJ/min

3.5 kW

(C) 3000 J/min

- (D) 20 kW
- 39. Boiling temperature of ammonia is
 - -33.33°C

(B) -78.5°C

(C) -29.8°C

- (D) -40.7°C
- 40. On Psychometric chart, relative humidity lines are
 - (A) horizontal
 - (B) vertical
 - (C) straight inclined sloping downward to the right

curved

- 41. Consider the following turbines
 - 1. Kaplan turbine
 - 2. Pelton wheel
 - 3. Francis

The correct sequence in increasing order of the specific speeds of these turbine is

7

2-3-1

(B) 2-1-3

(C) 3-1-2

- (D) 1-2-3
- 42. A Pelton wheel is ideally suited for
 - high head and low discharge
- (B) high head and high discharge
- (C) low head and low discharge
- (D) medium head and medium discharge
- 43. Which one of the following turbine is used in underwater power stations?
 - (A) Pelton turbine

(B) Deriaz turbine

Tubular turbine

(D) Turgo-impulse turbine

44.		ne centrifugal air compressor ression is generally taken as	design pract	cice, the value of polytropic exponent of
	(A)	1.2	(B)	1.3
	5	1.4	(D)	1.5
45.	The t	curbo machine used to circulate	refrigerant in	a large refrigeration plant is
	(A)	a centrifugal compressor	(B)	a radial flow turbine
	0	an axial flow compressor	(D)	an axial flow turbine
46.	area	axial flow compressor is design of annulus of the succeeding sta		stant velocity through all stages, then the
	(A)	remain the same		
	(B)	progressively decrease		
	(C)	progressively increase		
	(D)	depend upon the number of sta	ages	
47.		t will be the shape of the velociler, taking into account slip?	city triangle	at the exit of a radial bladed centrifugal
	(A)	Right-angled	(B)	Isosceles
	50	All angles less than 90°	(D)	One angle greater than 90°
48.	What satis (B) (C) (D)		power	ve suction head for a given pump are not
49.	Whic		raft tube wil	l not improve the hydraulic efficiency of the
	4	straight cylindrical	(B)	conical type
	(C)	bell-mouthed	(D)	bent tube
50.	Whic	ch one of the following is the bull	k modulus K	of a fluid?
	CA	dp	(B)	dp
		$\frac{d\rho}{d\rho}$	(D)	$\rho d\rho$
	(C)	$\rho \frac{dp}{d\rho}$ $\rho \frac{d\rho}{dp}$	(D)	$\frac{d\rho}{\rho d\rho}$ $\frac{d\rho}{\rho dp}$
51.	The	co-efficient of friction depends or	n	
	(A)	area of contact	(B)	shape of surfaces
	(C)	strength of surfaces		nature of surface

52.	▲ fully	developed	laminar	viscous	flow	through	a	circular	tube	has	the	ratio	of	maximum
	velocity	to average	evelocity	as										

(A) 3.0

(B) 2.5

(0) 2.0

(D) 1.5

53. Flow separation at a solid surface takes place due to

- (A) friction at the solid surface
- (B) decrease in pressure along the flow direction
- increase in pressure along the flow direction
- (D) positive pressure gradient along the flow direction and friction at the boundary

$$\frac{N\sqrt{Q}}{H^{3/4}}$$
 and $\frac{N\sqrt{P}}{H^{5/4}}$

(B)
$$\frac{N\sqrt{Q}}{H^{3/4}}$$
 and $\frac{N\sqrt{P}}{H^{3/4}}$

(C)
$$\frac{N\sqrt{Q}}{H^{5/4}}$$
 and $\frac{N\sqrt{P}}{H^{5/4}}$

(D)
$$\frac{N\sqrt{Q}}{H^{5/4}}$$
 and $\frac{N\sqrt{P}}{H^{3/4}}$

55. Which of the following are the functions of a volute casing in a centrifugal pump?

- 1. To collect water from the periphery of the impeller and to transmit it to the delivery pipe at constant velocity
- 2. To increase the discharge of the pump
- 3. To increase the efficiency of the pump
- 4. To reduce the loss of head in discharge
- (A) 1,2 and 3

(B) 2,3 and 4

1,3 and 4

(D) 1 and 2

56. High positive incidence in an axial compressor blade raw leads to

- (A) suppression of separation of flow on the blade
- (B) choking of the flow
- separation of flow on the suction side of the blade
- (D) separation of flow on the pressure side of the blade

only in the diffuser

(B) in the diffuser and impeller

(C) only in the impeller

(D) only in the inlet guide vanes

(A) $\sin^{-1}\left(\frac{1}{\sqrt{M}}\right)$

(B) $\sin^{-1} M$

 $\sin^{-1}\left(\frac{1}{M}\right)$

(D) $\cos^{-1}\left(\frac{1}{M}\right)$

Where M is Mach number

- 59. When a body falls freely under gravitational force, it possesses
 - (A) Maximum weight
 - (B) Minimum weight
 - No weight
 - (D) No effect on its weight
- 60. In Rayleigh flow heating of subsonic flow causes stagnation temperature to until $M < \frac{1}{\sqrt{r}}$ and then ————.
 - (A) Increase, Constant

(B) Decrease, Increase

Increase, Decrease

- (D) Decrease, Constant
- 61. The calorific value of gaseous fuels is expressed in terms of
 - (A) Kcal

(B) Kcal/kg

(C) Kcal/m²

- Kcal/m³
- 62. Indicated power of a 4-stroke engine is
 - (A) $\frac{\text{PLAN}}{60}$

(B) <u>2PLAN</u> 60

 $\frac{\text{PLAN}}{2 \times 60}$

(D) $\frac{4\text{PLAN}}{60}$

Where,

 $P = \text{mean effective pressure, in } \frac{N}{m^2}$

L = Stroke in m

A = Area of Piston in m²

N = rpm of engine

- 63. Air standard Otto cycle efficiency is expressed as
 - (A) $1 \left[\frac{1}{r}\right]^{\frac{r-1}{r}}$

(B) $1-\left[\frac{1}{r}\right]^{\frac{\gamma}{\gamma-1}}$

 $\int_{\Gamma} 1 - \left[\frac{1}{r}\right]^{r-1}$

(D) $1 - \left\lceil \frac{1}{r} \right\rceil^{r+1}$

Where, r = compression ratio

- 64. The maximum temperature in the I.C engine cylinder is of the order of
 - (A) 500 1000°C

(B) 1000 – 1500°C

(C) 1500 - 2000°C

(D) 2000 - 2500°C

65.	Coml	oustion in compression ignition engine	is	
	(A)	homogeneous	(B)	heterogeneous
	(C)	both (A) and (B)	(D)	laminar
66.	The i	nlet valve of a four stroke cycle I.C eng	ine re	mains open for nearly
	(A)	180°	(B)	125°
	On	235°	(D)	200°
67.	Most	high speed compression engines opera	tes on	
16.	(A)	Diesel cycle	(B)	Otto cycle
	S	Dual combustion cycle	(D)	Special type of air cycle
68.	The a	accumulation of carbon in a cylinder res	sults i	n increase of
	(A)	clearance volume	(B)	volumetric efficiency
	(C)	ignition time	ON	effective compression ratio
69.	Diese	el fuel, compared to petrol is,		
	(A)	less difficult to ignite	(B)	just about the same difficult to ignite
	(C)	more difficult to ignite	ON	highly ignitable
70.	For n	naximum range of a projectile, the angl	le of p	rojection should be
	(A)	30°	14B17	45°
	(C)	60°	(D)	90°
71.	The p	performance of a boiler is measured by	the	
	(A)	amount of water evaporated per hour	(B)	steam produced in kg/hr
	Sen	steam produced in kg/kg of fuel burnt	t (D)	all of these
72.		thermal efficiency of a diesel cycle h	aving	fixed compression ratio, with increase in
	(A)	increase	(DA)	decrease
	(C)	be independent	(D)	none of the above
73.		er firing order that maintains engine	bala	ncing and reduces engine vibration for a
	(A)	1, 2, 3, 4	BI	1, 2, 4, 3
	(C)	1, 4, 3, 2	(D)	None of the above
74.	The	air-fuel ratio of the petrol engine is con-	trolled	l by
	(A)	fuel pump	B1	carburettor
	(C)	injector	(D)	governor

75.	An er	ngine indicator is used to dete	ermine the	e follor	wing
	(A)	speed	No		
	(B)	temperature			
	(C)	volume of cylinder			
	on	mean effective pressure and	lindicated	d horse	e power
76.	Engu	ne pistons are usually made o	f alumini		
	MA	is lighter		(B)	wears less
	(C)	absorbs shocks		(D)	is stronger
77.	One l	kg of steam sample contains ().8 kg dry	steam	n, it's dryness fraction is
	(A)	20%		(B)	100%
	S	80%	N	(D)	60%
78.	A fus	sible plug is fitted in small boi	lers in or	der to	
	(A)	avoid excessive build up of p	ressure		
	(B)	avoid explosion	DA.		
	con	extinguish fire if water leve	l in the bo	oiler fa	alls below alarming limit
	(D)	control steam dome			
79.	The r	main interest of shielding in n	uclear re	actor i	s protection against
	(A)	X-rays		(B)	infra-red rays
	ven	neutrons and gamma rays		(D)	α,β and γ rays
80.	In twi	iggering fission, which type of	noutrone	0 m0 m	acro offective
00.	(A)	fast	neutrons	VD()	slow
	(C)	in bulk	11	(D)	static
	(0)	in buik		(D)	
81.	Cons	ider the following statements	:		
	Acros	ss the normal shock, the fluid	propertie	s char	nge in such a manner that the
	1.	velocity of flow is subsonic	10	2.	pressure increases
	3.	specific volume decreases		4.	temperature decreases
	Of th	nese statements:			
	(A)	2,3 and 4 are correct	- N	(B)	1,2 and 4 are correct
	(C)	1,3 and 4 are correct	1.8	01	1,2 and 3 are correct

- 82. In a flow through a convergent nozzle, the ratio of back pressure to the inlet pressure is given by the relation $\frac{P_B}{P_1} = \left[\frac{2}{r+1}\right]^{r/r+1}$. If the back pressure is lower than P_B given by the above equation, then
 - (A) the flow in the nozzle is supersonic
 - (B) a shock wave exists inside the nozzle
 - the gases expand outside the nozzle and a shock wave appears outside the nozzle
 - (D) a shock wave appears at the nozzle exit
- 83. Consider the following statements:

A convergent-divergent nozzle is said to be chocked when

- 1. Critical pressure is attained at the throat
- 2. Velocity at the throat becomes sonic
- 3. Exit velocity becomes supersonic

Of these statements

(A) 1,2 and 3 are correct

2 1 and 2 are correct

(C) 2 and 3 are correct

- (D) 1 and 3 are correct
- 84. Consider the following statements pertaining to isentropic flow:
 - 1. To obtain stagnation enthalpy, the flow need not be decelerated isentropically but should be decelerated ediabatically
 - 2. The effect of friction in an adiabatic flow is to reduce the stagnation pressure and increase entropy
 - 3. A constant area tube with rough surfaces can be used as a subsonic nozzle

Of these statements

1,2 and 3 are correct

(B) 1 and 2 are correct

(C) 1 and 3 are correct

- (D) 2 and 3 are correct
- 85. Given r = ratio of specific heats, for Rayleigh line, the temperature is maximum at a mach number of
 - \sqrt{s} $\frac{1}{\sqrt{r}}$

(B) √r

(C) $\frac{1}{r}$

(D) r

86. In a Fanno line shown in the given figure

- (A) subsonic flow proceeds along PQR
- (B) supersonic flow proceeds along PQR
- subsonic flow proceeds along PQ and supersonic flow proceeds along RQ
- (D) subsonic flow proceeds along RQ and supersonic flow proceeds along PQ
- 87. Introduction of a pitot tube in a supersonic flow would produce
 - (A) normal shock at the tube nose
 - curved shock at a little distance upstream of the tube nose
 - (C) normal shock at the upstream of the tube nose
 - (D) curved shock at the upstream of the tube nose
- 88. Which of the following statements are correct?
 - 1. Mach wave is a very weak shock wave
 - 2. Entropy change across a shock wave is nearly zero
 - 3. Total pressure behind a shock wave is less than ahead of it
 - 4. Mach number behind a normal shock is less than one

Codes:

- (A) 1,2 and 3
- (C) 1,2 and 4

- (B) 1,3 and 4
- (D) 2,3 and 4
- 89. For minimum work in compressor operating between limits p_1 and p_3 the best intercooler pressure p_2 is given by
 - (A) $p_2 = \sqrt{p_1 + p_3}$

 $p_1 = \sqrt{p_1 p_3}$

(C) $p_2 = \frac{p_1 + p_3}{2}$

- (D) $p_2 = p_1 p_3$
- 90. For one-dimensional isentropic flow in a diverging passage, if the initial static pressure is P_1 and the initial mach number is $M_1(M_1 < 1)$, then for the downstream flow
 - (A) $M_2 < M_1; P_2 < P_1$

 $M_2 < M_1; P_2 > P_1$

(C) $M_2 > M_1; P_2 > P_1$

(D) $M_2 > M_1; P_2 < P_1$

91.		e velocity of propagation of small di erature of 54°c, its speed would be	sturba	nces in air at 27°c is 330 m/s then at
	(A)	660 m/s	(B)	330 ×√2 m/s
		330 /√2 m/s	1	$330 \times \sqrt{\frac{327}{300}} \text{ m/s}$
92.	The	verall efficiency of a rocket is maximum	when	aircraft velocity compared to jet velocity is
04.	. (20)	same	(B)	half
	(C)	double	(D)	two third
93.	In roo	cket propulsion system, specific impuls	se is gi	ven by
	(A)	Thrust per unit volume flow rate of p	ropella	ant
	(B)	Thrust per unit area		
	ven	Thrust per unit weight flow rate of p	ropella	nt
	(D)	Thrust per unit time		
94.	A roc	ket engine for the combustion of its fu	el	
	WY	Carries its own oxygen	(B)	Uses surrounding air
	(C)	Uses compressed atmospheric air	(D)	Does not require oxygen
95.	Dwons	vlaive officionay is defined as ratio of		
90.		ulsive efficiency is defined as ratio of	(D)	Propulaive newer and engine autnut
	(A)	Thrust power and fuel energy	(B)	Propulsive power and engine output
	(C)	Propulsive power and fuel input	(80)	Thrust power and propulsive power
96.	Turbo	propeller has the following additiona		
	W	Propeller	(B)	Diffuser
	(C)	Intercooler	(D)	Turbine and combustion chamber
97.	The e	fficiency of propulsion of a jet engine i	s equa	l to
			1	
	(A)	$\frac{2u}{\hat{v}-u}$	(B)	$\frac{2u}{v+u}$
		v-u		v+u
	(C)		(D)	

98. In jet engines, for the efficient production of large power, fuel is burnt in an atmosphere of

15

(A) Vacuum

(B) Atmospheric air

Compressed air

Where, v = relative velocity of jet to aircraft

u =velocity of aircraft

(D) Oxygen alone

99.	A gas	s turbine used in air craft should be		
	(A)	high h.p and low weight	(B)	low weight and small frontal area
	(C)	small frontal area and high h.p	(D)	high speed and high h.p
100.	A jet	engine works on the principle of cons	ervation	n of
	(A)	mass	(B)	energy
	(C)	flow	(B)	linear momentum
101.	The n	naximum fluctuation of energy in a fl	vwheel	is equal to
		$I.w (w_1 - w_2)$		$I w^2 C_s$
		2EC.		All of the above
	(0)	2208	-1	
102.	The r	relation between the pitch of the chair	n (p) ar	nd pitch circle diameter of the sprocket (d)
		en by		
	(A)	$p = d \sin\left(\frac{60^{\circ}}{T}\right)$	(B)	$p = d\sin\left(\frac{90^{\circ}}{T}\right)$
	(C)	$p = d \sin\left(\frac{120^{\circ}}{T}\right)$	4001	$p = d \sin\left(\frac{180^{\circ}}{T}\right)$
	Wher	re T = Number of teeth on the sprock	et	
103.		eroplane takes a turn to the left. Th		direction when seen from the tail end and of the gyroscopic couple on the aeroplane
	401	To raise the nose and dip the tail	(B)	To dip the nose and raise the tail
	(C)	To raise the nose and tail	(D)	To dip the nose and tail
104.	The r	nost common semi – cone angle of a c	one clut	ch is
	(A)	5°	(B)	7.5°
	en	12.5°	(D)	17.5°
105.	The f	actor which affects the critical speed	of a sha	ft is
	(A)	Diameter of the disc	(B)	Span of the shaft
	(C)	Eccentricity	On	All of the above
106.	A les	ss viscous lubricant is good protection	against	
		Surface pitting	(B)	Normal wear
	100	Abrasion	(D)	Local wolding

16

ACFMCE

107. Match List I with List II and select the correct answer using the codes given below the lists:

List I

1.

2.

(d)

1

3

1

3

(d)

2

4

4

2

- Flywheel (a)
- (b) Governor
- (c) Critical speed
- (d) Inertia force
- Turning moment 3. D' Alempbert's Principle

Dunkerley method

4. Speed control on par with load

Codes:

(A)

(C)

108.

- (a)
- (b) 2
- 3

(c)

1

(B) 4

4

2

- 2
 - 3
- 2
- 4 4 1
- Match List I with List II and select the correct answer using the codes given below the lists:

List I

List II

- 4 links, 4 turning pairs (a)
- Complete constraint
- 3 links, 3 turning pairs Successful constraint (b) 2. Rigid frame
- (c) 5 links, 5 turning pairs
- (d) Footstep bearning
- Incomplete constraint

Codes:

- (a) (A) 3
- (b) 1
- 4 (B) 1 3 2 3 2 1
- (C) 1
- 4

(c)

109. Match List I (Applications) with List II (Features of vibration) and select the correct answer using the codes given below the lists:

List I

List II

- Vibration damper (a)
- Frequency of free vibration 1.
- Shock absorber (b)
- 2. Forced vibration
- Frahm tachometer (c)
- 3. Damping of vibration 4. Transverse vibration
- (d) Oscillator
- Absorption of vibration 5.

Codes:

(D)

3

(b) (a) (c) (d) 5 3 2 1 2 3 1 4 (B) (C) 5 3 4 1

2

5

110.	A sys		t para	llel planes is in dynamic balance if the					
	(A)	Force is equal to zero							
	(B)								
	401	Force and resultant couple are both	equal t	o zero					
	(D)			couple, but neither of them need necessary					
		be zero							
111.	In cas	se of involute tooth profile choose the	correct	statement					
	(A)	Interference does not occur for any n							
	WM)	Pressure angle is constant							
	(C)	The teeth are difficult to manufactur	re						
	(D)	The teeth are stronger than cycloida	l teeth	The state of the s					
112.			cating e	engine is maximum when crank is inclined					
	to lin	e of stroke at							
	(A)	0°	(B)	180°					
	on	0° Or 180°	(D)	90°					
113.	Whic	h of the following is a lower pair?							
	(A)	Ball and socket	(B)	Piston and cylinder					
	(C)	Cam and follower	on	(A) and (B) above					
114.	A me	chanism is an assemblage of							
	(A)	Two Links	(B)	Three links					
	101	Four links or more than four links	(D)	All of the above					
115.	A slid	ler crank chain consists of following n	umbers	s of turning and sliding pairs					
	(A)	1, 3	(B)	2, 2					
	(C)	4, 0	Dy	3, 1					
116.	The a		hich th	ne body begins to move down the plane is					
	40)	Angle of friction	(B)	Angle of repose					
	(C)	Angle of projection	(D)	None of the above					
117.			um wh	en the maximum tension in the belt (T) is					
	equal		(B)	$2T_{c}$					
	(A)	T_{C}							
	100	$3T_C$	(D)	$4T_C$					

118.	Que	to slip of the belt, the velocity ratio of the	he bel	t drive
	(A)	Increases	(D)	Decreases .
	(C)	Becomes zero	(D)	Does not change
119.	To re	educe speed fluctuation during a cycle o	f oper	ration in an engine the device used is
	(A)	Governor	(B)	Governor and flywheel
	(C)	Gyroscope	001	Flywheel
120.			ing,	maximum amplitude occurs when force
	•	uency is		
	(A)	Equal to natural frequency	(B)	Slightly less than natural frequency
	(C)	Slightly greater than natural frequency	(D)	Zero
121.		ch List I (Applications) with List II (Dr. codes given below the lists:	ive el	ement) and select the correct answer using
		List I		List II
	(a)	Automobile differential	1.	Flat belt
	(b)	Bicycle	2.	V - belt
	(c)	Planning machine	3.	Chain drive
	(d)			Gear drive
		(a) (b) (c) (d)		
	(M)	4 3 1 2		Marine a line are mainly a line in the
	(B)	1 3 4 2		
	(C)	4 2 1 3		
	(D)	1 2 4 3		
122.	Pivot	ted segment thrust bearing is used in or	rder t	provide
	(A)	Uniform distribution of load	(B)	Uniform wear
	501	A converging film of oil	(D)	Easy flow of oil
123.	Ina	horizontal flat belt drive, it is customar	v to u	se
	(A)	Bottom side of the belt as the slack side		
	(B)1	Top side of the belt as the slack side		
	(C)	Crossed - belting		
	(D)	Idler in between		
124.	Whic	ch of the following is called the divided j	Ourne	l hearings?
LAT.	(A)	Bell and roller bearings	(B)	Pivot bearing
	(C)	Split carbon bearing	(B)	Plummer block
	(0)	Spin caroon ocaring	ارس	1 Idilliller block

125.	Cons	sider the	e follow:	ing state	ments				
	The	form fa	ctor of a	spur ge	ar toot	h depe	ends upon	the	
	1.	Numb	er of tee	eth					
	2.	Pressu	re angl	e					
	3.	Adden	dum mo	odificatio	n coef	ficient			
	4.	Circul	ar pitch			0			
	Of th	nese sta	tement			1			
	(A)	1 and	3 are c	orrect			(B)	2 and 4 are correct	
	100)	1,2 ar	nd 3 are	correct			(D)	1 and 4 are correct	
									N
100	Colo	at the m	othod o	f	ntina	an ahi	not in con	motrio modellina	
126.				nodelling		an obj	(B)	metric modelling Surface modelling	
	(A) (C)		modelli		5		(D)	All the above	
	(0)	Sona	modem	ng			0	All the above	
							4		
127.		a journa	al runni	ing in a	bearin	g clock	cwise, at	steady state, the minim	um clearance shall
	be						-		
	(A)		the loa		1.12		(D)	To the left of the load l	ine
	(C)	10 th	e right	of the loa	id line		(D)	Unpreditable	
128.	Whi	ah coun	ling out	of the fo	llowin	o neov	idas Kina	matic flexibility?	
120.	(A)		couplin		HOWIH	g prov	des Kine	Oldham coupling	11 12
	(C)		coupling				(D)	Flange coupling	
			1 0						
100	Made	ala Tibes	Tial. T	int II am	مادد ا	4 4 1		swer using the codes giv	van halaw tha lista
129.	Mau		ist I	ast II all	u selec	. the c	List		en below the lists.
	(0)	RAM	ust 1			1.		k of computers	
	(a)	ROM				2.		re which makes the com	nuter work
	(b)	DOS				3.		y used for processing	puter work
	(c) (d)	LAN				4.		y in which user can not	write enuthing
	Code					7.	Memor	y in which user can not	write anything
	Cour								
		(a)	(b)	(c)	(d)	3.			
	(A)	1	2	3	4				
	(27)	3	4	2	1				
	(C)	2	3	4	1				
	(D)	3	4	1	2	(V)			
ACF	MCE						20		

130. Match List I (Machine element) with List II (Cause of failure) and select the correct answer Ling the codes given below the lists:

List I List II Axle 1. Shear stress (a) (b) Cotter 2. Tensile / compressive stress (c) Connecting rod 3. Wear Bending stress (d) Journal bearing 4. Codes: (c) (a) (b) (d) (A) 2 4 1 3 (Ta) 2 3 4 2 4 1 3 (C)

131. The buckling load will be maximum for a column if

3

(A) One end of the column is clamped and the other end is free

2

- (D) Both ends of the column are clamped
- Both ends of the column are hinged (C)
- (D) One end of the column is hinged and the other end is free
- 132. Correlate statement I and II using code given below
 - The probability of seizure in worm on worm wheel drives are reduced by making worm wheel teeth in bronze
 - II. Steel on bronze has low coefficient of friction than steel on steel or steel on C.I.

Code:

(D)

1

I and II are correct and II explains I (B) I and II are independently correct

- I is correct but II is not

4

- (D) II is correct but I is not
- A helical gear and a straight tooth spur gear are designed to transmit same power with same driving speed and velocity ratio

Choose the wrong statement

- Helical gear will have smaller pitch circle diameter (A)
- Helical gear will have smaller module (B)
- (0) Helical gear will have smaller length of tooth
- (D) Helical gear teeth will be subjected to lesser bending stress
- Correlate the following statements 134.
 - V belt has the advantage of small centre distance but under limiting conditions the small centre distance results in small belt length which is a disadvantage
 - A small belt length will cause the belt to go through a large number of stress reversal II. in a given time

Codes:

- (40) Both I and II are correct and II explains I
- I and II are independently correct (B)
- (C) I is correct but II is not
- (D) II is correct but I is not

135.	The	ratio of s	trength of butt	welds	under	impact l	oads	to gradual loads is	
	(A)	0.5				(B)	0.6		

(C) 0.7

136. Match the following

Automobiles (a) Fluid coupling 1. Hydraulic machinery (b) 2. Oldham coupling (c) Workshops Hooke's coupling 3. Misaligned shafts Protected flange coupling (d) 4. (a) (b) (c) (d) (A) 1 3 2 4 (B) 2 4 3 1 3 1 2 (2) 4 2 (D) 4 1 3

137. Select the correct one from the following for a crown gear

- (A) Cutting angle is 90°
- Pitch cone angle is 90°
- (C) Tip angle is 90°
- (D) Cone angle is 90°

138. Choose the correct statement

- The contact in case of spur gears is a line
- (B) The contact in case of spur gears is a point
- (C) The noise in helical gears is more as compared to spur gears
- (D) The contact in case of helical gears remains a line throughout

139. The materials having same elastic properties in all directions are called

- (A) Ideal materials
- (B) Uniform materials

Isotropic materials

(D) elastic materials

140.	na	leaf sp	oring, the	minimu	ım nun	ber of		th leaves should be	
	HAY	2				. 7	(B)	3	
	(C)	4					(D)	1	
141.	The	noint o	of contra	flevure i	n a loa	ded he	am refer	s to the section where the	
141.	(A)		ar force i		in a loa	aca be	(B)	Bending moment is maximum	
	(C)		ar force i		um		(D)	Bending moment changes the sign	
						1	1		
142.	Mate	ch List	I with I	I and sel	ect the	correc	t answer		
			List I				List	II	
	(a)		al gears			1.		nterchangeable	
	(b)		ing bone	gears		2.		ial thrust	
	(c)		n gears			3.	Quiet m		
	(d)		id gears			4.	Extreme	e speed reduction	
	Code	es:				100			
		(a)	(b)	(c)	(d)				
	(A)	1	2	3	4				
	(B)	3	2	1	4				
300	(C)	3	1	4	2	13			
	(D)	3	2	4	1				
	1		3 5						
143.	Whi	ch one	is not th	e advant	age of	helical	gear?		
	(A)	Gra	dual cont	act of te	eth		(B)	High contact ratio	
	CM	Axia	al force co	mponen	t		(D)	High peripheral speed	
144.			ears can l	be made	by				
	(A)		bing				(B)	Shaping with Pinion cutter	,
1:11	(C)	Shap	ping with	rack cu	tter		(D)	Milling	
						7 4			
145.			he follow		onents			The state of the s	
	1.		dicated co	mputer					
	2.		memory				. 4		
	3.		ommunio						
				ponents	are req	uired :		C system?	
	(A)	2 an					(B)	1 and 2	
	S	1,2 8	and 3				(D)	1 and 3	
146.	Cons	sider t	he follow	ing tool	materio	ale		THE RESERVE TO BE	
140.	1.		carbon s	-		110			
	2.		speed st			2			
	3.	1,000	mic tools	001					
	4.		ide tools						
				are pro	vided v	with no	gative re	ke angle?	
	(A)	1 an		, are pro	viacu v	, IUII IIC	(B)	2 and 3	
	(C)	1 an				100	DIT.	3 and 4	
	(-)	- 611							

147.	Scab	is a			
	(1)	Sand casting defect	(B)	Machining defect	
	(C)	Welding defect	(D)	Forging defect	
148.	Whic	h one of the following materia	als will require	the largest size of riser for	the same size o
	castin	ng?	1		
	(A)	Aluminium	(B)	Cast Iron	
	(C)	Steel	(D)	Copper	
149.	Consi	ider the following statements	about nose rad	ius	
	1.	It improves tool life			
	2.	It reduces the cutting force			
1	3.	It improves the surface finish	1		
	Of th	ese statements			
	(A)	1 and 2 are correct	(B)	2 and 3 are correct	
	(C)	1 and 3 are correct	O	1, 2 and 3 are correct	
					~
150.	Enlar	rging an existing circular hole	with a rotating	single point tool is called	
	(40)	Boring	(B)	Drilling	
	(C)	Reaming	(D)	Internal turning	1-
151.	In bls	anking operation the clearance	e trovided is		
101.	(A)	50% on punch and 50% on d			
	(B)	On die			
	(0)	On punch			
	(D)	On die or punch depending	upon designers	choice	
152.	A dia	mond locating pin is used in j	igs and fixtures	because	
	(A)	Diamond is very hard and w	vear resistant		
	(B)	It occupies very little space			N. Carrie
	401	It helps in assembly with to	lerance on cent	re distance	
	(D)	It has a long life			
150	0	CY 11 I I	111		
153.		e ways of Lathe beds are hard		0	
	(A)	Carburising	(B)	Cyaniding	
	(C)	Nitriding	(a)	Flame hardening	
ACF	MCE		24		

154.	Feed	drives in CNC milling mad	hines are p	rovide	d by	
	(A)	Synchronous motors	N	(B)	Induction motors	
	(C)	Stepper motors		on	Servo motors	
155.	Cons	sider the following operation	ns .			
	1.	Under cutting				
	2.	Plain turning				
	3.	Taper turning				
	4.	Thread cutting				
	The	correct sequence of these op	erations in	n machi	ning a product is	
- 5	(A)	2 - 3 - 4 - 1		(B)	3 - 2 - 4 - 1	
	On	2 - 3 - 1 - 4		(D)	3-2-1-4	
156.	Whie	ch of the following is / are th	ne advanta	ges of n	umerical control of machine	e tools?
	1.	Reduced lead time				
	2.	Consistently good quality				
	3.	Elaborate fixtures are not	required	T.		
	(4)	2 and 3		(B)	1 and 2	
	(C)	1 alone		(D)	1 and 3	
157.	Whie	ch one of the following mate	erial is used	d as the	bonding material for grind	ing wheels?
	(A)	Silicon carbide		(8)	Sodium silicate	
	(C)	Boron carbide		(D)	Aluminium oxide	
158.	In a	mechanical shaper, the len	gth of strok	ce is inc	reased by	
	(45)	Increasing the centre dist	tance of bul	ll gear a	and crank pin	S OF STATE OF
	(B)	Decreasing the centre dis	tance of bu	ll gear	and crank pin	~
	(C)	Increasing the length of t	he ram			
	(D)	Decreasing the length of	the slot in t	the slot	ted lever	
159.	Dire	ctional solidification in cast	ings can be	impro	ved by using	
	(A)	Chills and chaplets		(B)1	Chills and padding .	
	(C)	Chaplets and padding		(D)	Chills, Chaplets and paddi	ing
160.	Whic	ch one of the following pairs	s is not corr	ectly m	atched?	
	(A)	Aluminium alloy piston		-	Pressure Die Casting	
	(B)	Jewellery		-	Wave Process	10
-40	(C)	Large Pipes			Centrifugal Casting	
	(DI)	Large bells		21.	Loam moulding	
			9	5		ACEMCI

161.	If the	e melti	ng ratio	of a cup	oola is 1	0:1, the	en the coke requirement for one ton melt all be	e
	(A)	0.1 t	on				20 tons	
	(C)	01 to	n			10	(D) 11 tons	
1.00	M	1 7	T :01 T:	. II	1 1			
162.	Mate				ia seiec		orrect answer using the codes given below the li	sts.
			(Wear ty				II (Associated mechanism)	
	(a)		sive wear			1.	Galvanic action	
	(b)		sive wear			2.	Ploughing action	
	(c)		rolytic we			3.	Molecular transfer	
	(d)	Diffus	sion wear			4.	Plastic deformation	
						5.	Metallic bond	
		(a)	(b)	(c)	(d)			
	(40)	2	5	1	3			
	(B)	5	2	1	3			
	(C)	2	1	3	4			
	(D)	5	2	3	4			
					- •			
163.	In m	anual	part pro	gramm	ing and	l tape	preparation for a NC drilling machine, the spi	ndle
			_		_		eed in rpm will be	
	w	684					(B) 68.4	
	(C)	840				1	(D) 6840	
164.	Accu	racy of	f measuri	ng egu	ipment	is		
	(A)				-		surement can be read directly from a measu	ring
			uments					
	(B)	A me	easuring	of how	close th	e read	ing is to the true size	
	(C)	The	differenc	e betwe	een mea	sured	value and actual value	
	(D)	The	smallest	change	in mea	sure a	nd that can be measured	
105		.1				1 - 6 11		
165.					nich of t	the rone	owing is McLeod gauge used	
	(4)		pressure				(B) High pressure	
	(C)	High	tempera	iture			(D) Low temperature	
166.	Syst	ematic	errors a	re				
	(A)		domly dis		ed			
	(DI)		ularly rep			ıre		
	(C)	_					sides of mean value	
	(D)	Unk	nown err	rors				

167.	The v	value of modulus of elasticity for mild s	teel is	of the order of
	(A)	2.1×10 ⁵ kg/cm ²		
	On	2.1×10 ⁶ kg/cm ²		
	(C)	0.1×10 ⁶ kg/cm ²		
	(D)	3.8×10 ⁶ kg/cm ²		
168.	Whic	h of the following are measure by a sin	e bar?	
	(A)	Gear profiles	(B)	External tapers
	(C)	Internal tapers	(D)	Surface roughness
169.	The t	hread micrometer measures		
	(A)	The major diameter of the thread	(B)	The minor diameter of the thread
	who were	The effective diameter of the thread	(D)	The root diameter of the thread
170.	Repe	atability of measuring equipment is		
	(A)	The closeness with which a measurinstrument	remen	t can be read directly from a measuring
1	(B)	A measure of how close the reading is		
	(C)	Difference between measured value a The capability if indicate the same re		
171	TTI			
171.	(A)	number of slip gauge in a metric unit so 103	(B)	76
	(C)	48 and 31	007	all of the above sets are available
172.	Gear	tooth caliner is used to find the chords	l thick	ness of the following type of gear tooth
	401	Spur gear	(B)	Helical gear
	(C)	Worm gear	(D)	Bevel gear
173.	Circu	lar scale of the micrometer is marked	on	
	(A)	Anvil	(B)	Barrel
	on	Thimble	(D)	Ratchet
174.	Fiduc	rial indicator contains		
	(A)	Calibrated scale	(B)	A single index mark
	(C)	Micrometer screw movement	(D)	Optical head

110.	A COII	iparator for its working depends on		
	(A)	Accurately calibrated scale		
	(B)	Comparison with standard such as s	slip gau	ges
	(C)	Accurate micrometer gauge		
	(D)	Optical devices		
176.	The t	hickness of oil film at the surface of s	lin gaug	ges is of the order of
2.0.	4	0.005 micron	(B)	0.1 micron
	(C)	1 micron	(D)	10 microns
177.	The t	wo slip gauges in precision measuren	ent are	
	(A)	Assembling	(B)	Sliding
	(C)	Adhesion	on	Wringing
178.	Wick	man gauge is used for inspection of		
2.0.	(A)	Holes	(B)	Shafts
	(C)	Gears	-DAT	Screw threads
	(0)	Cours	-1	Depth Misdae
179.	Accor	ding to Taylor's principle, 'No Go' gau		
	(4)	Only one features at a time	(B)	Only important dimensions at a time
	(C)	All the dimensions at a time	(D)	Only the related dimensions at a time
180.	A plu	g gauge is used for measuring		
	(A)	Cylinder	(B)	Cylindrical bores
	(C)	Spherical holes	(D)	Screw threads
181.	C	tooth vernier is used to measure		
101.			(D)	Coor tooth thiolmone
	(A)	Gear tooth profile	(B)	Gear tooth thickness Addendum and dedendum
	on	Pitch line thickness of gear tooth	(D)	Addendum and dedendum
182.	The s	surface roughness on a drawing is rep	resente	d by
	(A)	Circles	(B)	Squares
	Son	Triangles	(D)	Curves
183.	Adde	endum of a gear is equal to		
100.	(A)	Pitch p	(B)	0.3 p
	(00)			0.3683 p
	1(0	0.3183 p	(D)	0.0000 p
ACF	MCE		28	

184.	anes	s need to be balanced in				
	W	Product layout		(B)	Process layout	
	(C)	Functional layout		(D)	Fixed position layout	
185.	Unity	y of command is violated un	der ———		organization.	
	(A)	Line	No.	(B)	Line and staff organization	
	(e)	Functional		(D)	Line as well as functional	
100	m	1.0				
186.		plates are used for		1		
	(A)	Advancing a programme in	i automati	c macr	nines	
	(B)	Planning layout				
	(C) (D)	Material flow optimization Checking the reliability of				N
	(2)	oncoming the reliability of	a product			
187.		npact estimate of the hand ned from	ling which	must	be done between various wo	rk stations is
	(A)	Gantt chart		(B)	String diagram	
	(0)	Travel chart		(D)	Bar chart	1
188.		rial handling is higher in ca	se of			
	(4)	Process layout		(B)	Product layout	PV
	(C)	Group layout		(D)	Fixed position layout	
189.	ABC	analysis is used in				
	(A)	Job analysis		(B)	Production schedule	
	con	Inventory control		(D)	Simulation	17
190.	Din a	ards are used in keeping rec	and of			
130.	(A)	Man power	ord or	(B)	Machine utilization	
	(00)	Material storage		(D)	Entry / Exit time of workers	
	-1		1	(D)	Littly / Last time of workers	
191.	Two	bin system is concerned with	1			
	(A)	Forecasting sales		(B)	Storage system	
	(C)	Economizing expenditure	1	DY	Ordering procedure	
100	MAD	I (Marking and All's I Daylor	Table 1	4.3		
192.			institute)		d guides for action on the sub	ect of
	(A)	Quality control		(B)	Material management	
	on	Equipment replacement		(D)	Optimum utilization of mach	ines

193.	Therk	oligs, in micromotion study, is described	d by	
	(A)	An event	(8)	Standard symbol and colour
	(C)	An activity	(D)	None of the above
194.		rating is the method of determining	_1	
	(A) (C)	Worth of a machine Relative value of job	(D)	Worker's performance on a job Utility of a product
	(0)	iterative varue of Job	(D)	othery of a product
195.		valuation is the method of determining		
	(A) (B)	Utility of a product Worth of as machine to perform a spe	oified.	tock
	(B)	Relative value of a job	cineu	lask
	(D)	Worker's performance on a job		
196.	Gant	t charts are associated with		
	(A)	Material handling	(B)	Inventory control
	Son	Production schedule	(D)	Sales forecast
197.	Routi	ng and scheduling are integral part of		
	W	Product planning	(B)	Work study
	(C)	Job analysis	(D)	Quality control
198.	A CP	M network is		
	(40)	Activity oriented	(B)	Event oriented
	(C)	Both activity and event oriented	(D)	Neither activity nor event oriented
199.		ERT, the time estimates of activities		probabilistic and the probability of their
	(A)	Binomial distribution	(B)	β - distribution
	(C)	Normal distribution	(D)	Poisson's distribution
200.	CPM	considers the trade between cost and		
	(A)	Man power	(B)	Time
	(C)	Machines	(D)	Material